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Abstract

For the exact Gaussian bestfit in coordinate metrology a feature independent
solution method is proposed: For arbitrary standard, complex, compound or
sculptured features a bestfit module can be generated in a short time by just
interfacing their describing parametric function in its most simple form (e.g.
xplane(u, v) = (u, v, 0)) to the proposed, generally applicable bestfit software
FUNKE.

In contrast to standard surfaces, exact Gaussian bestfit for complex, compound
or sculptured features has not been – up to now – part of today’s standards nor
part of the commercial state-of-the-art software.

The feature independence is achieved by consistently splitting feature-specific
geometry description from the generally treatable position/orientation-descrip-
tion.

Further advantages can be achieved by substituting the normally needed im-
plicit distance function by a parametric surface function. For example, there
are improved treatment of surface or measurement specific constraints, probe ra-
dius correction and deflection compensation as well as simplified interfacing with
CAD-systems.

By appropriate solution methods which exploit the sparse structure of the result-
ing system of equations, we solve the problem that for each measuring point two
additional unknowns, ui and vi are introduced using a parametric representation.
Computational costs and memory demands can then be restricted to a linear
dependence on the number of measuring points.

Finally, together with an easy test method for standard surfaces, a probing sim-
ulation is proposed, which should not only be restricted to verify the exact im-
plementation of FUNKE but could also be used for the verification of arbitrary
bestfit algorithms.
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Kurzfassung

Für exakte Ausgleichsrechnung nach Gauss auf dem Gebiet der Koordinaten-
Messtechnik wird eine Flächen-unabhängige Lösungs-Methode vorgeschlagen.
Konkret heisst dies, für beliebige reguläre, komplexe, zusammengesetzte oder
frei approximierte Flächen kann ohne weiteren Aufwand ein Modul für deren
Best-Einpassung generiert werden. Dies geschieht durch blosses Anbinden der
parametrischen Flächen-Beschreibung in einfachst möglicher Darstellung (z.B.
xEbene(u, v) = (u, v, 0)) an die allgemein verwendbare Ausgleichs-Software
FUNKE ( = Funktions-Unabhängige Nominalstellen-Korrigierte Einpassung).

Im Gegensatz zu regulären Flächen ist exakter Ausgleich nach Gauss für kom-
plexe, zusammengesetzte oder frei approximierte Flächen weder in den heutigen
Normen-Werken verankert, noch Teil von kommerzieller Standard-Software.

Flächen-Unabhängigkeit wird erreicht, durch konsequente Abtrennung von flä-
chenspezifischer Geometrie-Information von allgemein implementierbarer Lage-
Information.

Zusätzliche Vorteile ergeben sich dank dem Ersatz der normalerweise notwendi-
gen impliziten Distanz-Funktion durch die parametrische Flächen-Funktion. U.a.
sind dies: Einfache und verbesserte Behandlung von Flächen- oder Messproblem-
spezifischen Nebenbedingungen, Radius- und Biegungs-Korrektur sowie Daten-
austausch mit CAD-Systemen.

Dem Problem, dass bei Verwendung der parametrischen Beschreibung für jeden
Messpunkt zwei zusätzliche Unbekannte ui, vi auftreten, wird durch entsprechen-
de Lösungsmethoden Rechnung getragen, welche die schwach besetzte Struktur
des resultierenden Gleichungs-Systems ausnützen. So können Rechenzeit und
Speicherbedarf auf linearen Anstieg mit der Anzahl Messpunkte begrenzt werden.

Zusammen mit einer einfachen Test-Methode für reguläre Flächen wird am
Schluss eine Antast-Simulation vorgeschlagen, welche nicht nur bei FUNKE,
sondern ganz allgemein auch für die Verifikation von beliebigen Ausgleichs-Algo-
rithmen Verwendung finden könnte.
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Chapter 1

Introduction

1.1 Preface

1.1.1 Relevance

Dimensional Metrology is a science that may have existed even before humanRelevance of SW in
CM beings learned to write and count: the direct comparison of two dimensions

(gauging) can take place at any time, by no means of letters or figures! On
the other hand, the evaluation concepts of Coordinate Metrology (CM), based on
full position/orientation, dimension and form analysis, have only been developed
since computers learned to calculate efficiently. By this contrast the relevance of
scientific computing and software for CM can be illustrated.

A coordinate measuring system consists of two parts, hardware and software.CMM-system consists
of a SW and a HW
part

The hardware of a coordinate measuring system is very similar to a numerically
controlled (NC) machine in manufacturing. Here it will be treated only insofar
as there are consequences for some software aspects.

The software turns a coordinate measuring machine (CMM) into a very versatileSW makes CM flexible

measuring tool. The driver software (like the hardware) allows for the same
flexibility we have in NC-manufacturing in the automatic measurement as well.
On the other hand, this is not true for the evaluation software.

The evaluation of data is in some sense the reverse process of manufacturing.Data evaluation:
Reverse process of
manufacturing

In manufacturing we produce a physical model based on a known mathematical
model. The parameter bestfit as a key task of data evaluation in CM, how-
ever, determines the parameters of the mathematical model belonging to a given
physical model.

Measuring a surface, we know – in contrast to digitizing and reconstructing aNominal values:
Starting point for
optimization

surface from scratch – the surface class which the mathematical model is based
on and nominal values of all unknown parameters. In some sense this could
be an advantage and in some sense a restriction, however, we have to use this
information as a starting point to search for the unknown exact parameters.

As explained above, parameter bestfit can be regarded from the mathematicalCM-flexibility
restricted by the
available SW

11



12 CHAPTER 1. INTRODUCTION

point of view as the reverse process of NC-manufacturing, so we cannot use the
same or similar algorithms for both processes. While for standard surfaces such
as planes, spheres, cylinders, cones and toroids, exact solutions and algorithms
are well-known (e.g. [GS74], [For91], [BFH94]), for more complex and sculptured
surfaces only approximation methods are in use today. However, for any surface
type we need a specialized bestfit algorithm. The flexibility of CM is restricted
by the availability of appropriate evaluation algorithms and software.

1.1.2 New Concept

This thesis shows a surface-independent algorithm which allows exact bestfit for Separating geometry
from posit./orient.
allows surface
independent bestfit

arbitrary surfaces. We achieve this goal by separating geometrical description
from position/orientation description. Thus only the function which defines the
geometry is surface specific; everything not surface specific is integrated in the
generally applicable algorithm.

The algorithm differs from other universal algorithms, e.g. [GT92], by the fact Exact sculptured-
surface algorithmthat it performs not a pointwise fit but a real surface-fit, fully corresponding

to the exact, surface-oriented algorithms that are state of the art in the CM of
standard surfaces. Because it is based on a parametric surface representation
x(u, v,p), it can be applied to any type of surface, also to sculptured surfaces, to
complex surfaces (e.g. to ellipsoids, involutes, toroid-screws) or to compounds of
surfaces (e.g. to a square block with unknown height, width and depth).

Due to its structure, it is not more cost-intensive for the bestfit of these special Costs

surface-types compared to conventional algorithms for standard surfaces. Thus it
can be used without any drawbacks to standard measurement problems as well.

On the contrary, we have some advantages even there. For example, in addition Standard problems

to the desired bestfit parameters, it also delivers the contact points between
probe and surface. This enables compensation of probe tip deflection not only
for analogous probing devices but also for switching ones. Furthermore it allows
the solution of a great variety of constraint problems in a quite simple way.

In the following we call the software based on this algorithm ’FUNKE’(SPARK) FUNKE

(Funktions-Unabhängige Nominalstellen-Korrigierte Einpassung), which means
’function-independent bestfit, correcting nominal surface coordinates’. This is
because the nominal surface coordinates (u, v) are corrected here simultaneously
with all other parameters. This is in contrast to algorithms calculating pointwise
or serially, where the nominal values remain either implicitly fixed or where they
are re-corrected independently of position/orientation and geometry parameters.
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1.2 Background

1.2.1 General Parameter Fit

Parameter-fitting is a multifaceted task that is needed in many areas of naturalParameter-fit as a
standard problem and engineering sciences. For its general solution a lot of standard, mathematical

methods exist and a great amount of literature has been published [Sch91].

A much more specific task is the position/orientation fit of a geometrical objectGeometrical fit is
more specific with unknown dimension parameters into a given cloud of points in an euclidean

2D/3D space. This is exactly what is meant when we speak of bestfit in any
CM-context. Beside CM this task may be more specified to areas like Com-
puter Aided Design (CAD), Computer Aided Manufacturing (CAM), surveying,
geodesy, robotics, image processing and microscopy, or other sciences dealing with
a geometrical space.

For most purposes, e.g. for surface approximation in CAD or for fitting any func-Simplified bestfit

tionality in natural sciences, an arbitrary algorithm can be taken into considera-
tion which in some sense satisfactorily performs this job [Pra87]. For example we
can insert the points (xi, yi, zi) into any surface representation which describes
the surface explicitly:

z = z(x, y,P) , (1.1)

or implicitly,
f(x, y, z,P) = 0 , (1.2)

and determine the parameters P given by these equations, based on the simple
fact that a point lying on the surface satisfies the equations above.

1.2.2 Simple (Algebraic) Parameter Fit

In CM we can also go ahead like this, as long as we have the same number of pointsMinimal point-
number fit as unknown parameters. More often than for measured points, this fact appears

for calculated points, e.g. if we have to determine the center of a circle passing
through the measured centers of 3 bores. The individual bore we should measure
with a measuring point number larger (normally 3-5 times) than the minimally
required one. But also here we can use this simple type of parameter fit to
calculate an approximate bestfit as a starting point for the exact minimization.
Doing so, we can use any arbitrary implicit or explicit function, which describes
the surface.

An additional problem arises in the quite frequent case when these parametersBestfit as a con-
strained problem P are not independent from each other. This normally leads to a constrained

problem. For example, consider a cylinder, with P = (r,n, r), where n is the
orientation vector of the axis, r its position vector (c.f.(7.5) in section 7.2) and r
the radius of the cylinder. In order to obtain uniqueness while fitting P by (1.2)
we need to impose constraints, e.g.:

‖ n ‖= 1 and (r,n) = 0 .
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That is to say the orientation vector n is defined to be a unit vector, and the
position vector r is defined to be orthogonal to the orientation vector n.

This illustrates the redundancy which is involved in this kind of position/orien- Redundancy of posi-
tion and direction vec-
tor

tation description. A infinite number of position and direction vectors could
describe the position/orientation of the same cylinder. However this is the usual
description of a cylinder in CM, because from the geometrical point of view it
is the most clear. On the other hand, from the computational point of view,
redundancy is annoying.

1.2.3 Distance-Based (Geometric) Bestfit

As soon as we are dealing with a point number larger than the minimally required Problematic nature
with overdetermined
problems

one, a special situation arises in the bestfitting problem of CM. This normally
results in an unsolvable, overdetermined system of equations. Nevertheless, a
unique solution is required in order to obtain comparable results. We have then
to define an unambiguous computational goal for bestfitting a surface into given
measuring points [DIN86], [Bri89], [Lot90]. It is not enough to choose some
numerically correct optimization method: only the optimum with regard to a
well-defined optimization criterion can be accepted as the exact solution.

This optimization criterion is always based on the (orthogonal) distances between Objective function is
based on the
orthogonal distances

points and surface. Even if this objective function is much more difficult to impose
([GS74], [Spa86], [Pra87], [For87]), than a simple parameter estimation according
to (1.1) or (1.2), it delivers a more suggestive result. An apparent example of
this fact is given in [GGS94], on a theoretically constructed ellipse, fitted by these
two ways. The two methods used lead to extremely different results. [PvH90]
shows significant differences also on a practically relevant example between the
simplified (linear) bestfit of a circle based on the equation

f(x, y, mx, my, r) = (x−mx)
2 + (y −my)

2 − r2 = 0 , (1.3)

and the exact, distance-based bestfit.

With some theoretical considerations we can get a quantitative idea of the re- Theoretical exam-
ple with a circlesulting differences. Assume a measuring point (xi, yi) in distance di from the

unknown, but exactly bestfitted circle. This assumption can be expressed by the
following equation

(xi −mx)
2 + (yi −my)

2 = (r + di)
2 . (1.4)

We now use (1.3) to fit the unknown parameters mx, my, r in the least squares Least squares fit based
on the unmodified
circle equation (1.3)

sense, i.e. we minimize the norm of a residual vector e = (e1, . . . , en)
n∑

i=1

e2
i = min ,

with the individual residuals

ei = (xi −mx)
2 + (yi −my)

2 − r2

belonging to the respective measuring point (xi, yi).
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Using (1.4) we recognize that minimizingExplicit residuals

n∑
i=1

e2
i

is equivalent to minimizing

n∑
i=1

((r + di)
2 − r2)2 =

n∑
i=1

4r2d2
i + 4rd3

i + d4
i (1.5)

instead of
n∑

i=1

d2
i . (1.6)

Minimizing expression (1.5) makes no geometrical sense. The term d4
i could beGeometrical

interpretation interpreted geometrically to such an extent, that big deviations di are weighted
too much (compared to the minimization of (1.6)). Furthermore geometrically
interpreting the term 4r2d2

i , we can state that minimization (1.5) would ’prefer’
small circles. (Figure 1.1)
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Figure 1.1: Algebraical (- - -) versus geometrical (—) bestfit

That is why an appropriate distance function is needed for surface fitting in CM.Distance-Function:
Example circle This is a special implicit function f , normalized in such a way that

f(x, y, z,P) = d(x,y,z) ,
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while d(x,y,z) is the orthogonal distance of the point (x, y, z) to the surface. With
the example of a circle we get the distance function:

f(x, y, mx, my, r) =
√

(x−mx)2 + (y −my)2 − r = 0 .

Such a distance function can be interpreted as a potential function with the po- Distance-Function:
Special potential
function

tential d(x,y,z) and with equipotential surfaces equidistant to the nominal surface
[Gaw89]. Later on (section 7.2) we will give a simple method for constructing this
function for standard surfaces which are generated by straight lines and circles.
The offset surface then belongs to the same surface class as the nominal surface.

This statement virtually never applies to more complex or to sculptured surfaces. Offset-curve of an
ellipseEven a simple surface such as the ellipse does not comply; its offset surface for

example (with offset d) can be expressed by means of the surface normal nellipse

as: (
x(t)
y(t)

)
︸ ︷︷ ︸

xoffset

=

(
a · cos(t)
b · sin(t)

)
︸ ︷︷ ︸

xellipse

+d ·

 b·cos(t)
l(t)

a·sin(t)
l(t)


︸ ︷︷ ︸

nellipse

=

(
(a + d · b

l(t)
) · cos(t)

(b + d · a
l(t)

) · sin(t)

)
(1.7)

with

l(t) =
√

a2 · sin2(t) + b2 · cos2(t) .

Only in the case a = b (ellipse degenerates to a circle) does l(t) become indepen- Ellipse degenerates to
a circledent of t. This allows us to write (1.7) as(

x(t)
y(t)

)
︸ ︷︷ ︸

xoffset

=

(
(a + d · 1) · cos(t)
(a + d · 1) · sin(t)

)
︸ ︷︷ ︸

xcircle

, (1.8)

representing an other circle with radius (a + d).

1.2.3.1 Distance Function for Sculptured Surfaces

In the past a lot of effort was put [GPS80], [Goc82], [WP83], [WG87], [Gaw89], Approximate distance
function[Goc90], [Xio91] towards overcoming this problem with constructing an approx-

imating implicit function f(x,P) ∼= d(x,y,z) with the required metric properties
(distance function). Starting from an arbitrary implicit function F (x,P) (with-
out this metric property) we can transform it in such an approximate implicit
distance function f(x,P) by

f(x,P) =
F (x,P)

‖ grad(F (x,P)) ‖
∼= d(x,y,z) . (1.9)
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This formula is for example proposed in [GPS80], [Goc82], but without any ex-Interpretation of the
approximate distance
formula

planation. To give an explanation, consider a point x∗ lying on the surface and
a point x very near to this point but not lying on the surface. We perform the
linearization:

F (x,P) + grad(F (x,P))T · (x∗ − x) ∼= F (x∗,P)︸ ︷︷ ︸
0 on surface

= 0 . (1.10)

If we additionally assume x∗ as the footpoint belonging to x, the vector (x∗− x)
has length d and points in the same or in the opposite direction as grad(F (x)).
In the case of opposite direction (i.e. the ’effective’ deviation vector (x− x∗) has
same direction) we get

grad(F (x,P))T · (x∗ − x) = − ‖ grad(F (x,P)) ‖ · ‖ (x∗ − x) ‖︸ ︷︷ ︸
d

. (1.11)

Now we obtain (1.9) by inserting (1.11) in (1.10).

Before (1.9) can be applied, an (arbitrary) approximating implicit functionApproximating
implicit function F (x,P) has to be found. For sculptured surfaces this can be quite a difficult

task. In [Goc82] it is performed for a turbine blade, for the profiles in parallel
planes, not for the surface as a whole. It is done by means of a conformal map-
ping in the complex plane. As shown there, even then it is a difficult numerical
problem to achieve an approximation with sufficient accuracy.

In [WP83] and [Gaw89] an approach called the method of ’separated directions’Separated directions

is used:

F (x) =
k∑

l=0

ql(z, rl(x)) · yl , (1.12)

(where ql, rl are arbitrary functions, e.g. splines) with low degree k (normally 2),
allowing an approximation for quasi-cylindric workpieces (with small curvature
in direction y). An additional problem [WP83] arises in the fact that there are
points not belonging to the surface but still satisfying the equation F (x) = 0.

Furthermore it is a big disadvantage that the exact parametric surface represen-CAD/CM: Different
surface-representa-
tions

tation as used in CAD for data exchange and geometrical operations, as well as in
CAM (Computer Aided Manufacturing) and in CAQ (Computer Aided Quality
Control) for driving a CNC-machine by calculating a sequence of surface-points
[Sim91], [Neu91], [Kle93], has to be replaced here by an approximating implicit
function [Goc82], [WP83], [Gaw89], just for measurements. Going ahead like this,
each individual measurement problem has to be solved by its special way.

1.2.4 Bestfit with Orthogonal Distance Regression

A conventional parameter fit for fitting any functionality is often taking intoRegression versus
Orthogonal Distance
Regression

account the uncertainty of the ordinate (output) values only while the abscissa
(input) values are assumed to be exact. (This is known as ’regression’ [Sch91].)
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The methods of ’Orthogonal Distance Regression’ (ODR), e.g. [BD89], [BR90],
[GSW90] could remedy this problem. They take into account the uncertainty of
the abscissa values as well.

This means that the objective function is not the Gaussian error Normal regression

n∑
i=1

(zi − f(xi, yi,P))2 = min ,

but the Gaussian error with corrected abscissa values (x∗i , y
∗
i ) ODR

n∑
i=1

(zi − f(x∗i , y
∗
i ,P))2 = min ,

while
n∑

i=1

(xi − x∗i )
2 + (yi − y∗i )

2 = min .

These methods can be adapted to the geometrical bestfit in CM [BCF92] as far ODR for explicit
functionsas the surface can be represented in a explicit form. A real surface on a workpiece

can often be described only partially in explicit form. For example, only one half
of a sphere can be described explicitly. This is a drawback of the explicit function
representation for CAD/CAM-purposes.

Using weights for the errors of abscissa and ordinate values and letting the ordi- ODR for implicit
functionsnate weights go to infinity, ODR can also be applied to implicitly defined surfaces.

This is shown for the example of an implicitly defined ellipse in [GGS94].

The algorithm FUNKE, derived in the following, is dealing with any kind of ODR as a special case
of FUNKEparametric surface description

x(u, v) , y(u, v) , z(u, v) .

If we can find a re-parameterization

(u, v) 7→ (u?, v?)

in such a way that 2 of 3 coordinate functions are the trivial functions

x?(u?, v?) = u? and y?(u?, v?) = v?

together with a general, third function

z? = z?(u?, v?) = z(u(u?, v?), v(u?, v?)) ,

we arrive at a procedure quite similar to that used by ODR. This is obvious
because this special case can be formulated as the ODR problem for the explicit
function

z? = f(x?, y?) .
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This becomes possible if we can explicitly invert the re-parameterizationInvertible
re-parameterization

(u, v) 7→ (u?(u, v), v?(u, v)) ≡ (x(u, v), y(u, v)) .

Then we obtain the third function z?(u?, v?) by simply inserting the inverted
functions u(u?, v?) and v(u?, v?) into z(u, v).

As an example, consider a sphere:Example: sphere

x(u, v) = r · cos(u) · cos(v)
y(u, v) = r · sin(u) · cos(v)
z(u, v) = r · sin(v).

Starting from the re-parameterization

u?(u, v) = r cos(u) cos(v) and v?(u, v) = r sin(u) cos(v)

we get the function

v(u?, v?) = arcsin(

√
1− u?2 + v?2

r2
) or v(u?, v?) = − arcsin(

√
1− u?2 + v?2

r2
)

In this case we do not need the inverted function u(u?, v?) because z is only a func-
tion of v. Inserting this into the z-function from the original surface description,
we get:

x(u?, v?) = u?

y(u?, v?) = v?

z(u?, v?) =
√

r2 − u?2 − v?2 ( or −
√

r2 − u?2 − v?2).

We recognize that we can describe only a semi-sphere with this special type of
parameterization.

Furthermore, if bestfit becomes possible based on arbitrary parameterizations,Most convenient
parameterization can
be chosen

we are able to choose the most convenient one for each individual case. (See
examples in the following sections.)

ODR as well as the FUNKE algorithm can exploit the sparsity of the resultingSparse structure
exploitation system of equations.

In the above special case, there still remains a difference between ODR and theSeparation of
posit./orient. from
geometry

FUNKE algorithm: ODR treats all unknown parameters in the same way, while
FUNKE separates position/orientation from geometry (shape). This results in a
special treatment of the corresponding parameters. On the other hand, it allows
one to define a newly introduced surface by its purely geometric parameters only.
Instead of giving its full description, including position/orientation parameters,
we have only to specify rotation and translation symmetries.

This way we overcome the problem discussed in [BCF92] at the same time. ThereRank-deficiency
caused by symmetries it is shown by the example of a straight line fit in parametric form that the
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redundancy of the parametric description results in a singular system of equations.
The surface-independent concept of FUNKE explicitly deals with the rotation and
translation parameters, thus it is able to eliminate them according to the given
surface symmetries. So we arrive at a non-singular system of equations.

As we will see in the following chapters, FUNKE could be designated as an ODR FUNKE compared to
ODRalgorithm generalized to parametric surfaces or specialized (and optimized) to sur-

faces and curves in 2D and 3D. It deals especially with position/orientation best-
fit, combined with dimension bestfit, making position/orientation bestfit surface-
independent.

1.2.5 Bestfit Based on Parametric Representation

Due to the problems with implicit and explicit function representations as dis- Advantages of
parametric
representation

cussed above, the advantage of being able to fit a surface in parametric form

x = x(u, v) , y = y(u, v) , z = z(u, v)

seems obvious. With parametric representation it is no problem to describe a
closed surface (e.g. sphere) or workpieces containing different surfaces. It is a very
transparent representation form and it can be easily derived from an arbitrary
(NC-)manufacturing process. (E.g. by recording the position of each axis involved
as a function of time.)

The parametric representation transforms under a roto-translation (rotation R Parametric surface
transformable like a
single point

and translation (t̄x, t̄y, t̄z)) like a single coordinate vector:
x(u, v)
y(u, v)
z(u, v)

1

 =

 R
t̄x
t̄y
t̄z

0 0 0 1

 ·


x′(u, v)
y′(u, v)
z′(u, v)

1

 . (1.13)

Instead of coordinates x, y, z, coordinate functions x(u, v), y(u, v), z(u, v) are
transformed.

The parametric form seems to be particularly suitable for any position/orientation Qualification for
posit./orient. bestfitbestfit due to this characteristic. So rotation/translation parameters can be easily

separated from all other parameters.

Dealing with polynomial surfaces or modern description formats for sculptured Standard interfaces
for parametric
surface-description

surfaces like NURBS (=Non-Uniform Rational B-Splines) [ES89], the surface co-
efficients of the parametric representation can be directly imported in an easy
way by standardized formats (VDA-FS, IGES, STEP), [VDA82], [Org90], [ISO94]
from nearly every 3D CAD-system dealing with sculptured surfaces.

So it is not astonishing that there is especially in the CAD/CAM/CAQ world Parametric
representation
important for
CAD/CAM/CAQ

some effort given [DBPK84], [Ker87], [MYL92] towards searching for possibilities
to adapt the parametric representation for position/orientation bestfit. This will
also be the way we will proceed in the following.
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Until now there have been a lot of different approaches: The most simple wayPoint-cloud fit as
a CAD/CAM-proof
method

is to fit the cloud of measuring points against the cloud of the corresponding
nominal points on the parametric surface [GT92].

This method can be improved by projecting the obtained deviations to the surfaceImproved point-cloud
fit normals in the nominal points [GT92]. Others [DBPK84] correct the results by

searching for the shortest distances to the bestfitted surface.

[Kru86], [PH89] and [vH89] fit b-splines through the measuring points and thenBestfit by
interpolating
measuring points

interpolate the measured points at the locations of the nominal points by inter-
secting them with the respective surface normals. Similar to the substitution
with an implicit function there is again a complex approximation problem to be
solved.

The approaches above do not deliver the true bestfit solution. Thus several papersPoint-to-point fit
alternated with
nearest distance-
searching

searching for exact bestfit solutions [Gaw89] mention the possibility of alternating
this point-to-point bestfit with a point-to-surface distance searching algorithm.
[Gaw89] abandons this possibility due to the immense costs and [Ker87] and
[MYL92] try it with a small number of measuring points. Even then [MYL92]
reports problems with high costs.

Proceeding like this, there are a lot of nested non-linear optimization problemsDifficult control over
nested optimizations to be solved (see numerical example in section 6.3.2.4). If a single one of the

individual optimization processes fails, there is a big danger of not arriving at
the true result. It will be shown in section 5.3.3 how these methods can be
interpreted as simplifications of FUNKE; this happens by neglecting certain parts
of the coefficient matrix of the resulting system of equations.

So in spite of all the apparent advantages mentioned, big problems come alongProblems caused by
two additional
parameters

with the parametric representation which are exclusively caused by its two addi-
tional parameters u, v to be determined, describing a single point on the surface.
These parameters do not appear in the explicit or implicit representation; this
means, either we always know the exact location of a surface point (x, y, z) (in
the case of an explicit function), or we do not have to care for it (in the case of
an implicit function). On the other side, fitting any surface parameters of a para-
metric function, we have to search for an additional pair of surface coordinates
(u, v), for each additional measuring point involved.

Above we discussed the problem of redundancy in an implicit or parametric func-Posit./orient. hides in
polynomial coefficients tion representation, caused by rotation or translation symmetries. If dealing with

a polynomial in parametric form, we are concerned with a special type of redun-
dancy: The position/orientation of a polynomial is already incorporated into the
geometry-describing parameters, i.e., in its polynomial coefficients. So if we want
to bestfit a sculptured surface, the concept of separating position/orientation
from geometry, as used by FUNKE, has vital relevance. Otherwise we would not
be able to bestfit it without simultaneously changing its shape.

The task of fitting a polynomial or correcting its nominal coefficients accordingSurface reconstruction

to given measuring points should be distinguished from the task of fitting a poly-
nomial or a sculptured surface (which may be assembled by a large number of
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individual polynomials) with respect to position/orientation but letting its nom-
inal shape remain unchanged, i.e. neither modifying its surface coefficients nor
changing the relative position/orientation of the individual polynomial patches
[Gar91], [SB94], [KS95]. The former task can be performed in many ways: in
classical ones as used in most CAD’s, or more sophisticated ones [Hen74], [SH76],
[BCF92], which lead to a nonlinear problem by varying the (u, v) parameters as
well. The latter task can be solved in one exact way only.

FUNKE can principally be used for both tasks. Used for the latter one it delivers Both types of
polynomial-fit
available

the desired exact solution, used for the former one, it corresponds to the above
mentioned, more sophisticated algorithms. Additionally, it allows the purposely
freezing/modifying of individual polynomial-coefficients.



Chapter 2

Basics

2.1 Concepts of Coordinate Metrology

2.1.1 Preliminary Remarks

A numerically controlled (NC) coordinate measuring machine is something like aNo manual handling
means cost-saving and
maximum objectivity

robot, not a working one, but an information delivering one. It can be moved to
any position given by the (approximate) nominal 3D/2D coordinates and it sends
back the exactly measured 3D/2D coordinates. Because a NC-CMM-system car-
ries out measurements and evaluations with a minimum of manual handling, it
saves costs (for a high number of pieces) and at the same time it guarantees (sup-
posing that the NC-program is well-designed) a maximum of objectivity because
the measuring procedure itself is uninfluenced by the individual operator.

It is important to notice that the measured coordinates are not guaranteed toNo exact driving path
but exact surface
points are guaranteed

refer exactly to the same locations as the nominal ones. This means some spread
around the theoretical driving path is still allowed. On the other hand, we know
that they represent a 3D/2D point lying exactly on the actual surface in the
vicinity of the pretended nominal point.

As a consequence, we always have to measure surfaces rather than curves or pointsSurface-oriented
measuring and data
evaluation

in CM, the latter to be determined as intersections of surfaces. Furthermore
for accurate data evaluation we should never fit points to points, but points to
surfaces or vice versa [Gaw89].

This becomes particularly important in cases where we do not know the exactCoordinate system
given by a sculptured
surface

workpiece coordinate system. Due to the lack of appropriate methods – especially
when dealing with complex or sculptured surfaces – the coordinate system is often
determined by those surfaces that are easiest to determine, rather than those
representing best the specified functionality of the workpiece.

As an example consider a turbine blade. The turbine base is normally given byFunctionality-based
coordinate system standard surfaces while the blade is described by a sculptured one. Of course the

form of the blade is most important for functionality. However the form deviations
are mostly expressed in the easy-to-determine coordinate system given by the

23
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turbine base. A much better approach would be to express the blade deviations in
its own – optimally determined – coordinate system [Gaw89]. This way, possibly
unnecessarily corrections of the form of the blade are avoided. Instead, we take
into account the relative position/orientation deviation of the blade by correcting
the base accordingly.

In defining a coordinate system in CM according to the standards [ISO81b], the Normal procedure to
get a workpiece
coordinate system

individual surfaces are weighted differently. Consider a coordinate system defined
by three planes: With one plane we perform the ’spatial alignment’ to determine
the ’primary orientation’. With a second plane we perform the ’plane alignment’
to determine the ’secondary orientation’ while the third plane determines the
’origin’ only. So the first plane is weighted most, because it determines 3 degrees
of freedom (DOF) (2 rotations an 1 translation), while the second determines 2
DOF (1 rotation and 1 translation) and the third only one DOF (1 translation).
From the point of view of the desired workpiece-functionality, this is quite a
suggestive procedure in a lot of cases. However, sometimes a coordinate system
is desired which should be defined by all surfaces together with equivalent weights.
This may occur in manufacturing, for example, if we have to cut out the nominal
shape from a moulded workpiece. But this type of measurement problem cannot
be solved by standard commercial software.

A CMM is a flexible and universal instrument. This is not only true for a CMM as a flexible
measuring toolNC-driven CMM but also for a manually operated one. Classical dimensional

metrology requires for nearly every class of workpieces (or surfaces respectively)
a different measuring device. The diameter of a bore is normally measured with
a tool other than the distance between two planes; to inspect e.g. threads, we
need special devices as well. The variety of workpiece classes measurable by CM
is only restricted by the software available (and of course by the actual probing
possibilities, e.g. very small or large workpiece dimensions). This further implies
the usefulness of developing software dealing with complex surfaces [WBH75],
[Wae80], [Wol84], [Sta90], [SB93] and [Nag94]. So we are able to check the
precision of cog-wheels or ball screw drives without additional and specialized
equipment.

Apart from these obvious advantages, the new possibilities offered by the evalu- Special evaluation
concept of CMation concept used in CM are of key importance even if they are not visible at

first sight. This concept could be summarized like this:

The individual metrology parameters are not determined by individ-
ual, direct measurements, but they are collectively evaluated from
coordinate data, all recorded in the same measuring base.

Only in this way does it become possible to decouple position/orientation, dimen-
sion, and form deviations from each other. This topic will be further discussed
in section 2.1.2.

Due to an easy interpretation, the ideal case is that only the latter type of devi- Form deviations
ideally represent
random errors

ations include the random errors, with unsystematic behavior and are therefore
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not further analyzable. The ’systematic form deviation’ could be expressed then
by additional dimension parameters.

A member of a more complex class of surfaces should be allowed as a substituteAllowing a more
complex substitute
feature than nominal
one

feature, even if the nominal feature is a simple standard surface. This implies
that the chosen class of substitute features contains the class of nominal features
as a special subclass.

As an example, circular cylinders can be interpreted as special types of ellipticExample: Elliptic
cylinder substitutes
circular cylinder

cylinders. To express this explicitly, a suitable parameterization must be chosen.
This means that, instead of parameterizing the class of elliptic cylinders with
the half axes p = (a, b) as dimension parameters, it is more suitable to include
ellipticity ε as an explicit parameter by p = (r, ε):

x(u, v,p) =

 r · cos(u)
ε · r · sin(u)

v

 .

By keeping the parameter ε fixed on the value 1 we allow only the (sub-)class
of nominal surfaces for bestfit; by varying ε we can additionally allow the more
general (upper-)class of elliptic cylinders as substitute surfaces and so record a
systematic form deviation (ellipticity) by one single parameter.

Therefore if we are interested in an easy interpretation of the measuring resultsAppropriate SW
desired and if we want use them not only for tolerance control but also for improving the

manufacturing process (by eliminating systematic error influences), we should be
able to fit complex features (here e.g. an elliptic cylinder), not only standard ones.
This requires appropriate software, even when dealing with standard nominal
features.

Putting systematic deviations into additional dimension parameters is sometimesProblem: Determining
conicity of a cylindric
bore

not evident at first sight. For example it appears in the well-known method of
fitting a bore (representing nominally a circular cylinder) to a cone to determine
its conicity. Even if only standard surfaces are involved here, this can cause
problems in several commercial SW packages [Dri89]. These problems are related
to the fact that the top of the cone goes to infinity (in the case the cone is nearly
a cylinder).

Fitting by using parametric representation, we can overcome this problem bySolution by
appropriate parametric
description

replacing the normal parameterization of the cone with half-angle (γ) = p as
dimension parameter

x(u, v,p) =

 v · cos(u)
v · sin(u)
v · cot(γ)

 ,

by a parameterization with dimension parameters p = (γ, r)

x(u, v,p) =

 (v · sin(γ) + r) · cos(u)
(v · sin(γ) + r) · sin(u)

v · cos(γ)

 .



26 CHAPTER 2. BASICS

While the former parameterization includes the subclass of planes (with γ = π/2) Either planes or
cylinders as subclass

x(u, v,p) =

 v · cos(u)
v · sin(u)

0

 ,

the latter parameterization includes the subclass of cylinders (with γ = 0)

x(u, v,p) =

 (0 + r) · cos(u)
(0 + r) · sin(u)

v · 1

 .

Keeping the position in z (top of the cone) fixed, we arrive at the same number Impeding redundancy

of unknowns. There is therefore no redundancy in the description, which could
cause rank-deficiency in the resulting system of equations.

2.1.2 Position/Orientation, Dimension, and Form

The main goal of CM is the dimensional analysis of a workpiece with respect to Primary evaluation
concept of CMposition/orientation, dimension and form deviations of its surfaces.

The tolerances defined by a design engineer [ISO85] are normally prescribing lim- Totalized deviation
and tolerancesits for combined and correlated deviations as a sum of these three individual

types of deviations. Often this is not suitable for the intended functionality of
the workpiece [Wir88], [GMPW90], [Reg90], [Wir93] and it is especially impossi-
ble to adjust a manufacturing process based on the error-feedback of combined
deviations only.

For example, a position/orientation deviation is often a virtual deviation only, Posit./orient. do not
get any stand-alone
deviation

and this is explained by the trivial fact that rotating and translating a surface does
not change its geometry; only compared relatively to the position/orientation of
another surface does it represent a true deviation.

However, even considering the surface on its own, position/orientation has to be Posit./orient. has to
be determined first to
get correct dimension
and form deviations

determined first, just to free the exact dimension and form deviations from any
other deviations. Afterwards the measured position/orientation can be neglected
assuming we have no reference position/orientation in the form of a workpiece
coordinate system given by some other surfaces.

So – considered separately – this type of deviation does not exist in reality, it was Deviation due to
actual measurement
coordinate system

created only by the chosen measuring arrangement. It is all the more important to
remove the amount of its influence from the totally measured deviation. Settling
this by software, the results become independent of the actually chosen measuring
base.

Thus it is a good idea to separate the geometrical description of a surface com- Posit./orient.
separated from
geometrical surface
description

pletely from its position/orientation description. Especially by using the para-
metric representation, this can be performed in a much more transparent way
than with the implicit representation.
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It is easy to verify that any kind of measurement which aims to determine anAny direct
measurement delivers
a totalized deviation

individual parameter directly, actually determines such a combined deviation.
Only from the evaluation side does it become possible to analyze these different
types of deviations and to free them from any correlations between each other.

Example: Measuring a shaft at n locations, is a measurement where the dimensionE.g. multi-point
measuring technique parameter ’radius’ of several cylinders should be determined directly (Figure 2.1).

In principle, the radius of an individual cylinder could be determined by a two2 point measurement

point measurement somewhere on its circumference. But this way the measured
dimension would be influenced (among others) by the form deviation of the cylin-
der.

Multiple two point measurements along the dashed lines would yield different2 possibilities to get
elliptic cross-sections cylinder radii at different rotational angles. By averaging, the accuracy of the

evaluated dimension can be improved, but still we cannot decide on the cylinder’s
form deviation. For example, if the cross-sections along the dashed lines turn out
to be elliptic [Hir88], we do not know if the cylinder really has an (elliptic) form
deviation or if it has a correct dimension and there is some orientation deviation.

Qualitatively we could decide this (in this simple case only) by correctly interpret-3D-Bestfit provides
complete deviation-
analysis

ing the correlation between the deviations measured by probe 3 and the deviations
measured by probe 4. In general, the correct quantitative interpretation becomes
possible only by bestfitting a cylinder through 3D-points which are all taken in
the same measuring base. ([SW80], [Buc89])

polar diagrams of form deviations:

1 2 3 4 5 6 7 8 9

1 ... 9 = Two point measurements on a turned workpiece

Figure 2.1: Ambiguity (form ↔ pos./orient.) of a two point measurement

2.2 State of the Art of Commercial CM-Software

2.2.1 Problems Solved

For the CM of standard surfaces, software modules have been developed duringCM of standard
surfaces
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the last 15-20 years (Leitz/DEA/B&S/TESA, Zeiss, SIP, Metromec etc.) which
perform this job in an accurately defined way, starting with a given set of mea-
suring points (3D coordinates), a given class of substitute features (to be taken
into consideration), and finally a given optimization criterion.

Even if there are some differences between different commercial software products Comparable results

with respect to user interface, treatable constraints and visualization of calculated
results, the basic job still remains the same. Results delivered by software ’A’
should agree with those delivered by software ’B’, supposing that they are deal-
ing with exactly the same input data, consisting of the 3 parts mentioned above
[Dri89]. Recently there have been some efforts afoot to develop reference soft-
wares, test data sets, and check-software tools [CF92], [Hop93], [DH93], [Kna93],
which check and guarantee this.

2.2.2 Some Unsolved Problems

So it can be observed, that, though on one hand the simple bestfit problem for Today complex and
sculptured surfaces do
not dispose of
comparable, exact
bestfit procedures

standard surfaces is solved to a large extent, on the other hand no comparable
methods exist for complex or sculptured surfaces. This is an important reason
why today’s standards (e.g. standards for cog wheels [ISO81a]) do not meet the
theoretically exact demands as well.

Furthermore, besides some special applications, there are no commonly known Exact bestfits of any
standard surface-
compounds are not
state of the art too

methods for any kind of simultaneous fit of surface compounds into a given cloud
of measuring points, even if exclusively dealing with standard surfaces. As an
example we can take the bestfit of a square block (as a compound of 6 planes
including angles of 90 degrees) with respect to position, orientation, height, width
and depth.

Finally for different types of standard surfaces as well as for an individual surface Different procedures
for different
CM-problems

fitted with respect to different constraints, different data evaluating algorithms
are also necessary. This fact is increasing both, the costs for developing CM
software and the costs for validating commercial CM software by implementing
reference software for test purposes. Of course it increases also the likelihood of
implementation errors.

For these reasons a standardization and generalization of bestfit procedure, as This thesis as a
contribution to these
problems

a main goal of this thesis, seems to be of great benefit [Lot83]. The method
explained herein is intended to contribute to all of the above mentioned types
of CM-software problems. In this context, appropriate algorithms have been
developed, implemented and verified.



Chapter 3

Definitions

3.1 Standardized Interface

3.1.1 Special Parametric Representation

The first step towards deriving a function-independent bestfit method is the def-Same parametric
interface for any
surface type

inition of an appropriate interface between the generally applicable bestfit proce-
dure and the individual surface-functions, which have to be additionally imple-
mented. Every surface in the 3D-space, no matter if it is a regular, complex, or
polynomial surface, can be described as follows:

x(u, v,P) =

 x(u, v,P)
y(u, v,P)
z(u, v,P)

 . (3.1)

A surface is always described by two independent parameters (a curve only bySurfaces coordinates
u and v one), here called u and v, which define the location of a specific point on the

surface. In the following they are referred to as surface coordinates. There are
other parameters P which stay fixed for a given surface.

For example, we can express a plane in parametric form as:Example: Plane in
parametric form

x(u, v,P) = r + u · nu + v · nv . (3.2)

Besides the surface coordinates u, v, we have in total 9 remaining fixed parametersFix-parameters

P = (r,nu,nv), i.e., the components of the position vector r and of the two
direction vectors nu and nv.

Notice that this parametric description is not independent of the chosen coordi-Description for a
certain coordinate
system

nate system: it looks different in every coordinate system. So these parameters
describe the position and orientation of the plane for a certain coordinate system
only.

But for the same coordinate system and the same position and orientation of theSame surface
described differently plane there also exist an infinite number of possible descriptions.

29
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The description above is highly redundant: The position vector r can be chosen, Various position and
directions vectors are
allowed

pointing to any arbitrary point on the plane. The two direction vectors nu and
nv can be varied by their length, by the angle enclosed and by a rotation around
the normal direction, still describing the same plane.

We choose these vectors and a coordinate system in such a way that the para- Searching for the
simplest descriptionmetric description turns out as simple as possible.

The most suitable coordinate system is a principal axes system. If we define a Suitable coordinate
systemcoordinate system with the plane to be described coincident with the xy-plane,

we can choose the position vector

r =

 0
0
0


and the direction vectors

nu =

 1
0
0

 and nv =

 0
1
0

 .

Hence the resulting parametric description is very simple:

x(u, v) =

 u
v
0

 . (3.3)

All the 9 additional fixed parameters P have disappeared. We recognize that they Fixed parameters of
the plane do not
contain any geometry
information

contain only information about position/orientation but not about geometry. In
contrast to most other surfaces and curves, a plane can not change its geometry.
The class of all planes contains only one geometrical ’instance’ because planes
differ only by their position and orientation. So for the plane we do not need any
fixed parameters describing its geometry.

In general we can express the dimension (e.g. cylinder radius) or, generally speak- Geometry parameters

ing, the actual geometry (e.g. coefficients of Bézier polynomials) of a surface by
g geometric parameters (Not to be confused with the fixed parameters P !)

p = (p1, . . . , pg)

where g can vary between 0 (as in the case of a plane) and a very large number
(in the case of a high-degree polynomial).

For the method described we should strictly separate geometrical parameters Separated geometry
parametersfrom position/orientation parameters right from the beginning.

This is not usual for classical evaluation methods. For example, fitting a circle Parameters not
distinguished by
classical methods

by varying its center (mx, my) and radius r leads to an objective function

Q2(mx, my, r) = min ,
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with three unknowns P = (mx, my, r) treated equally. But only the unknown
r describes the geometry, while the coordinates of the center (mx, my) describe
only the position and may be eliminated by moving to an appropriate coordinate
system. So p, defined in the sense above, consists of only one element p = (r).

Therefore we are specializing the purely geometrical description of a surface toAvoiding redundancies

a description in a principal axes system. By doing so we keep the parametric
description as simple as possible, even if it is not absolutely necessary for the
described algorithm. In this way we are able to avoid redundancies as much as
possible and to separate geometry from position/orientation as far as possible.

In fact, in some cases (polynomial surfaces), the parameters simultaneously de-Polynomial: Geometry
and posit./ orient.
cannot be decoupled

scribing geometry and position/orientation cannot be separated. We will discuss
this problem in section 5.2.2.

We call this simplified, purely geometrical description, preferably in a principalSPR: Special
parametric description axes system, the special parametric representation (SPR):

x′(u, v,p) .

For the description of position/orientation we will always refer to this special
parametric representation x′, containing only geometrical but no general posi-
tion/orientation information, as given, e.g., by (3.3), where x′(u, v,p) = (u, v, 0)
describes a plane in SPR.

3.1.2 Generalized Parametric Representation

By means of 3 rotations around the x-,y- and z-axis defined by the anglesPosit./ orient.
parameters

a = (a, b, c)

and a translation vector

t =

 tx
ty
tz

 ,

we can move a surface from SPR into any desired position/orientation.

Let x′ be the coordinates in the principal axes system. ThenParametric description
for any posit./orient.

x(u, v,p, a, t) = R(a) · x′(u, v,p) + t̄ = R(a) · (x′(u, v,p) + t) (3.4)

with

t = R(a)T · t̄

andTotal rotation
as combined
xyz-rotations R(a) = Rx(a) ·Ry(b) ·Rz(c) (3.5)
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where

Rx =

 1 0 0
0 cos(a) sin(a)
0 − sin(a) cos(a)

 (3.6)

Ry =

 cos(b) 0 − sin(b)
0 1 0

sin(b) 0 cos(b)

 (3.7)

Rz =

 cos(c) sin(c) 0
− sin(c) cos(c) 0

0 0 1

 . (3.8)

Not only single points, but also the surface-function can be transformed as a Rotation and
translation of the
plane

whole. As an example we transform the plane (3.3) by using (3.4)

R(a) ·


 u

v
0

+ t


and we arrive at the usual description (3.2)

x(u, v,P) = r + u · nu + v · nv

with

r = R(a) ·

 tx
ty
tz


and

nu =

 cos(b) cos(c)
cos(c) sin(a) sin(b)− cos(a) sin(c)
cos(a) cos(c) sin(b) + sin(a) sin(c)


and

nv =

 cos(b) sin(c)
cos(a) cos(c) + sin(a) sin(b) sin(c)
cos(a) sin(b) sin(c)− cos(c) sin(a)

 .

Notice: Defining the direction vectors nu and nv like this, they are automatically Direction vectors have
automatically length 1unit vectors and orthogonal to each other

‖ nu ‖= 1 and ‖ nv ‖= 1 and ‖ nu ‖T · ‖ nv ‖= 0

for arbitrary values (a, b, c), because R(a) is orthogonal.

Furthermore, due to the 2 translation symmetries of the plane, we can prescribe Symmetries: Certain
posit./orient.
parameters can be
eliminated

the translations tx, ty, and due to the rotation-symmetry, we can also prescribe
for c arbitrary constant values, for example

tx = 0 ty = 0 c = 0 .
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By this we have eliminated all redundancies. We getPosition and direction
vectors expressed by t
and a

r(a, b, tz) =

 − sin(b) · tz
sin(a) cos(b) · tz
cos(a) cos(b) · tz


and

nu(a, b) =

 cos(b)
sin(a) sin(b)
cos(a) sin(b)

 nv(a) =

 0
cos(a)
sin(a)

 .

So we have explicitly expressed the plane by the position/orientation parameters
defined above:

x(u, v,P) = x(u, v, r(a, b, tz),nu(a, b),nv(a)) = x(u, v, a, b, tz) .

In general we have to define, according to (3.4), the surface x as a function ofNot taking in account
any symmetries: g+6
unknown parameters

6 position/orientation parameters a = (a, b, c) and t = (tx, ty, tz). Fitting the
surface also with respect to its dimension (or, more generally, to its geometry)
we have to vary additionally the g geometry parameters p = (p1, . . . , pg). So
not taking into account any symmetries, a general surface description x(u, v) has
g + 6 fixed parameters

x = f(u, v, p1, . . . , pg, a, b, c, tx, ty, tz︸ ︷︷ ︸
fixed parameters

) . (3.9)

3.2 Nominal Feature and Nominal Points

Let the nominal surface geometry be defined by a set of g initial valuesNominal geometry

p0 = (p10, . . . , pg0)

of its dimension parameters. Then the nominal surface in SPR x′nom(u, v) be-
comes

x′nom(u, v) = x′(u, v,p0) . (3.10)

According to (3.4) the nominal position/orientation of the nominal surface isNominal posit./orient.

given by the 3 initial values

t0 = (tx0, ty0, tz0)

for the translation vector and the 3 initial values

a0 = (a0, b0, c0)

for the angles by which we achieve the nominal position/orientation, starting from
the original position/orientation of the surface description x′(u, v,p) in SPR.
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Inserting these initial values into (3.9), the nominal surface xnom(u, v) in nominal Nominal surface in
nominal posit./orient.position/orientation is completely defined

xnom(u, v) = x(u, v,p0, a0, t0) . (3.11)

After defining nominal geometry and nominal position/orientation, we can spec- Nominal points

ify the location of the i-th nominal-point x̃i on the surface by the two surface
coordinates

(ui0, vi0)

and we get its 3D-coordinates

x̃i = x(ui0, vi0,p0, a0, t0) . (3.12)

All these nominal values we know from the beginning. We can use them as initial Nominal data as
starting point for
optimization

values for an iterative search for the final, unknown optimum as the result of the
bestfit.

Apart from these nominal data, we have the measuring points as an additional in- Measuring points as
additional bestfit-
input

put for the bestfit procedure. For each nominal point x̃i, we define the measuring
point belonging to it as

x̂i = (x̂i, ŷi, ẑi) .

3.3 Substitute Feature and Footpoints

Let p∗ be the unknown values of the parameters p describing the geometry of Geometry of the
substitute featurethe substitute feature ( = member of the allowed class of features, which is best

substituting the real feature).

Furthermore, let a∗, t∗ be the values of the parameters a, t describing position/ Posit./orient. after
bestfitorientation of the bestfitted substitute feature.

All these parameters appear also in an implicit representation even though they In implicit representa-
tion the different
types of parameters
cannot be separated

are normally not explicitly available but hidden in a non-trivial way (e.g. they
have to be determined by a principal axes transformation).

The parametric substitute surface with unknown geometry p∗ is described in its Substitute surface in
bestfitted pos./orient.unknown, bestfitted position/orientation a∗, t∗ with the two additional parame-

ters u, v by:
xsub(u, v) = x(u, v,p∗, a∗, t∗) . (3.13)

With these definitions we can define the bestfit as the task to find the corrections Corrections to the
nominal values

∆p = p∗ − p0

∆a = a∗ − a0

∆t = t∗ − t0

to the known nominal values p0, a0, t0 such that the obtained surface fits opti-
mally into the given measuring points x̂1 . . . x̂n. The optimum is defined then by
a given objective function (Gauss, Chebychev, etc.).
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Dealing with parametric representation we can also specify the location of the i-thFootpoints

footpoint x̄i (defined as the surface-point with shortest distance to the respective
measuring point) after bestfit belonging to the i-th measuring point x̂i by two
surface coordinates

(ui
∗, vi

∗) .

We get its 3D-coordinates by

x̄i = x(ui
∗, vi

∗,p∗, a∗, t∗) . (3.14)

Thus we can analogously defineCorrections to the
nominal surface
coordinates ∆ui = ui

∗ − ui0

∆vi = vi
∗ − vi0 .

We know from CM practice that the corrections ∆p, representing the geometricalSmall geometrical
corrections ∆p differences between substitute and nominal features, are normally very small.

Either the absolute differences ‖ ∆pi ‖ are small if the ‖ p0i ‖ themselves are
small, or if they are large, the relative differences are typically smaller than 0.1%
to 1%, i.e.:

‖∆pi ‖
‖ p0i ‖

≤ 0.001 to 0.01 .

A reasonable manufacturing process should not deliver parts with larger devia-
tions.

While measuring on a numerically controlled CMM, we know furthermore thatSmall posit./orient.
corrections ∆t,∆a the distances which are allowed for the real workpiece surfaces to differ from the

defined nominal points typically have a magnitude of not more than 0.5mm to
1mm, i.e.:

‖ x̂i − x̃i ‖ ≤ 0.5mm to 1mm .

Otherwise collisions or large security spaces for probing could not be avoided. By
this, we know that we are dealing also with small values ∆a and ∆t.

So we have always to determine first roughly an approximate position/orientationRough posit./orient.
for measurement on a
CNC-driven CMM

of a workpiece lying on the CMM and to define this position/orientation as the
nominal one. Based on this information the CMM can be moved automatically
to the individual nominal points.

We have to perform small corrections to given nominal parameters. Thus, weLinearization around
the nominal data can express the unknown values p∗, a∗, t∗ by the known values p0, t0, a0 based on

a linearization around the latter ones. As a prerequisite we need the functional
dependence which this linearization is based on.

In the following, the explicit expression for the linearly approximated valuesExplicit linear
approximation for the
bestfitted parametric
surface

p∗′, a∗′ and t∗′ can be given if a differentiable parametric function in form (3.4)
has to be bestfitted with regard to Gaussian (L2) norm.

It is the goal of this thesis to perform this in a function-independent way for anyLinearization in a
function independent
way

given x′(u, v,p). As shown in section 6.1.2, we are able to do this in an explicit
way, even when we are taking into account any probe radius corrections.
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The surface coordinates (ui0, vi0) of the nominal points are also involved in this Surface coordinates
u, v additionally
involved

linearized expression, i.e., we have to compute p∗′, a∗′ and t∗′ based on all of the
following values

p0, a0, t0, u10, v10 . . . un0, vn0, x̂1 . . . x̂n .

Because ∆a and ∆t are small, the surface coordinates of the i-th footpoint CNC-CMM: Small
corrections to the
surface coordinates

(ui
∗, vi

∗) are also very close to the surfaces coordinates of the i-th nominal point
(ui0, vi0), assuming we are measuring with a CNC-controlled CMM.

Thus the linearization point is located close to the final solution and this guaran- Linear approximation
still better than a
point wise fit

tees a good approximation (and a good convergence of the iterated search). Of
course, in CM-practice we should not be satisfied with such a linearized solution,
even the results of a linearized, surface-based model are still superior to those of
any pointwise fit (which are common practice for sculptured surfaces today).

However, by iteratively solving the linearized model (Gauss-Newton method) we Linearization extended
to Gauss-Newton
method

can improve this first approximation. So we get the true bestfit even if the starting
values are not so close to the final solution.

This could appear, e.g., if we are measuring with a manually operated CMM Evaluating data of a
manually operated
CMM

where we are not able to move exactly to given nominal points. In this case we
do not dispose of good approximated starting values ui0 , vi0 .
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Function Independent Bestfit

4.1 Preliminary Remarks

In the preceding chapters, we have shown that parametric representation is con-Parametric
representation
convenient for
function independent
bestfit

venient for function independent bestfit. First, we can define a standardized
interface for all types of parametrically defined surfaces. Second, we can properly
separate geometry from position/orientation based on this representation form.

On the other hand, with parametric representation, it is not possible to fit theMissing distance
function surface as a whole to the measuring points in the same way as we can do with

implicit representation. First, we have 3 equations instead of 1, second, we have
the two surface coordinates u and v as additional unknown parameters. So we
cannot define an explicit distance function which gives the actual distance to the
surface by inserting any measuring point into it.

So the most simple way to bestfit independently of the actual surface functionPoint-to-point fit is
also surface-
independent

is to use a point-to-point fit (see e.g. [RMM94]): Each point in the cloud of
measured points has a corresponding point in the cloud of nominal points. The
first cloud has to be fitted into the second cloud obeying a given optimization
criterion (Gauss, Chebychev, etc.). Most of the SW-tools commercially available
today for sculptured surface measurement are using such types of algorithms.

But a pointwise fit cannot give satisfactory results, for example, it delivers resultsNo satisfactory results
with pointwise fit strongly dependent on the arbitrary choice of the measuring base. This is in

absolute contradiction to the basic concepts of CM, as explained in section 2.1.

FUNKE is a surface-oriented algorithm. Because there is an implemented mech-Point-to-point fit is
covered by FUNKE as
a special case

anism to ’freeze’ (i.e. to eliminate) all unknowns individually, point-to-point fit is
contained in FUNKE as a special case. We can achieve this by freezing the sur-
face coordinates u0i, v0i of the nominal points x̃i. By this we are able to simulate
the results of a point-to-point fit [SB92], [SB95].

Normally point-to-point fit is an iterative searching process as well as a surface-Point-to-point fit with
SVD oriented fit. For starting values far away from the final solution convergence is

not guaranteed. In the following section 4.2 we present a (as far as we know) new
method to fit a cloud of points into another cloud of points in the least squares

37
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sense. By applying singular value decomposition (SVD) to this well-known prob-
lem, we avoid any convergence problems which could appear by conventionally
searching for optimum (e.g. using Newton’s method).

4.2 Pointwise Bestfit

For fitting the cloud of nominal points to the cloud of measuring points, we have Expression for the
distances in bestfitted
state

first to express the distance between the i-th measuring point x̂i belonging to the
i-th nominal point x̃i as a function of the translational and rotational corrections
∆t and ∆a which will perform the point-to-point bestfit:

di(∆a,∆t) = ‖ x̂i −R(∆a) · x̃i −∆t ‖ . (4.1)

Then we minimize the resulting objective function in dependence of these correc- Objective function

tions ∆a and ∆t

min
∆a,∆t

Q2(∆a,∆t) = min
∆a,∆t

n∑
i=1

di(∆a,∆t)2 . (4.2)

We separate the problem into two sub-problems; in a least squares problem as a Separation in 2
sub-problemsfunction of translation and in a least squares problem as a function of rotation:

min
∆a,∆t

Q2(∆a,∆t) = min
∆a

 min
∆t(∆a)

Q2 (∆a,∆t(∆a))︸ ︷︷ ︸
translational problem

 = min
∆a

Q?
2(∆a)︸ ︷︷ ︸

rotational problem

. (4.3)

These two sub-problems can be solved by well-known methods. The translational Known solutions for
the 2 sub-problemsproblem is solved by merging the two centers of gravity of the two point clouds and

the rotational problem is the so-called orthogonal Procrustes problem [GvL89].

First we solve the translational problem: Translational problem

min
∆t(∆a)

Q2(∆a,∆t(∆a)) =
n∑

i=1

‖ x̂i −R(∆a) · x̃−∆t ‖2 . (4.4)

This leads to the overdetermined system Least squares problem
I3
...
I3

 ·∆t ≈


x̂1 −R(∆a) · x̃1

...
x̂n −R(∆a) · x̃n

 . (4.5)

The normal equations belonging to the above system Normal equations

n · I3 ·∆t =
n∑

i=1

x̂i −R(∆a) · x̃i
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can be solved by the difference vector between the centers of gravity of measuringDifference-vector
between centers of
gravity

points and rotated nominal points:

∆tmin(∆a) =

n∑
i=1

x̂i

n
−R(∆a) ·

n∑
i=1

x̃i

n

=< x̂ > −R(∆a) < x̃ > .

By inserting this expression into the objective function Q2 according to (4.3), weRotational problem

obtain the sub-problem for rotation

min
∆a

Q2 (∆a,∆tmin(∆a)) = min
∆a

Q?
2(∆a)

=
n∑

i=1

‖ (x̂i− < x̂ >)−R(∆a) · (x̃i− < x̃ >) ‖2 .

It is equivalent with the orthogonal Procrustes problemOrthogonal
Procrustes problem

‖ A−BQ ‖F = ‖ AT −QT BT ‖F = min subject to QT Q = I . (4.6)

Identifying AT by the matrix formed by all measuring point coordinates trans-Transformed
measuring points formed into its center of gravity system yields

(x̂1− < x̂ >)T

...
(x̂n− < x̂ >)T

 ,

BT by the matrix formed by all nominal point coordinates transformed into itsTransformed nominal
points center of gravity system yields

(x̃1− < x̃ >)T

...
(x̃n− < x̃ >)T


and QT with R(a).

In [GvL89] it is shown that this can be solved by puttingSolution by SVD

Q = UV T ,

where U and V are the matrices obtained by the singular value decomposition

BT A = UΣV T .

Q is also the orthogonal factor of the polar decomposition of the matrix BT A,Polar decomposition

see [Gan90]:
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BT A = UΣV T = (UV T )︸ ︷︷ ︸
orthogonal

· (V ΣV T )︸ ︷︷ ︸
pos.semidefinite

= Q · P︸ ︷︷ ︸
polar decomposition

,

where Q is orthogonal and P is semi-definite. The polar decomposition can be
interpreted as a generalization of the polar representation of a complex value.

So wet get the following algorithm: SVD-based
point-to-point-fit
algorithm

1. Calculate centers of gravity:

< x̂ >=

n∑
i=1

x̂i

n
< x̃ >=

n∑
i=1

x̃i

n

2. Build matrices with the relative coordinates:

C =


(x̂1− < x̂ >)T

...
(x̂n− < x̂ >)T



D =


(x̃1− < x̃ >)T

...
(x̃n− < x̃ >)T


3. Perform the singular value decomposition of DCT :

DCT = UΣV T

4. Calculate rotation matrix R(∆a) by:

R(∆a) = V UT

5. Calculate translation vector ∆t by:

∆t =< x̂ > −R(∆a) < x̃ >

We can also obtain the factorized form of the rotation matrix R(∆a) according to Factorizing R(∆a)

(3.5). We apply 3 single Givens rotations G1,G2 and G3 to transform the rotation
matrix into an identity matrix.

G3 ·G2 ·G1 ·R = I3

Thus we get the factorization:

R(∆a) = Rx(∆a) ·Ry(∆b) ·Rz(∆c) = GT
3 ·GT

2 ·GT
1 . (4.7)
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4.3 Parametric Function-Based Bestfit Model

4.3.1 ’Distance Function’ of a Parametric Surface

Of course such a fit of a point cloud to another point cloud as discussed in thePoint-to point fit
compared to
point-to-surface fit

previous section does not lead to the same good results as the classical fit of a
surface to a point cloud. It does not allow us to adapt geometry (dimension)
parameters and it depends to a high degree on the initial position/orientation.

The special characteristic of the parametric representation to describe a surfaceProblems caused by
pointwise description pointwise, useful for CAD and for 3-axes control of a manufacturing process,

turns out to be a vital drawback here.

As discussed in section 1.2.3, in classical CM we are dealing with an implicitOrthogonal
surface-distance as a
direct function of a
3D coordinate

surface description d(x) = 0, called distance function, which delivers explicitly
the orthogonal surface-distance dx̂ of any measuring point x̂ inserted into it:

dx̂ = d(x̂) .

For parametric surfaces we cannot compute the point-to-surface-distance with anOnly distance to a
single surface point
available

analytical expression. An analytical expression we can give only for the distance
between a measured point and a well-defined surface point.

So the point-to-surface distance, delivered explicitly by a distance-function based(uM , vM ) belonging
specifically to a
certain measuring
point

on implicit representation, is not easy to obtain by a pointwise ’distance function’.
It can be obtained only by adding a pair of surface coordinates (uM , vM) belonging
specifically to the actual measuring point.

d(x̂, uM , vM︸ ︷︷ ︸
MP input

, a, t,p) =‖ x̂−R(a) ·
(
x′(uM , vM ,p)− t

)
‖ (4.8)

These coordinates are not known from the beginning. They are the surface co-Minimizing delivers
point-to-surface
distance

ordinates of the corresponding footpoint, i.e., of the surface-point whose surface
normal meets exactly the chosen measuring point. However, we know that the
function d(x̂, a, t,p, u, v) is minimal at this location (uM , vM). Thus we cannot
give an explicit expression for d(x̂, a, t,p) (like for implicitly defined standard
surfaces), but we can write in a formally correct way:

dx̂ = d(x̂, a, t,p) = min
u,v

‖ x̂− x(u, v,p, a, t) ‖ . (4.9)

So we would obtain the following objective function:Objective function

Q2(p, a, t) =
n∑

i=1

d2
x̂i

=
n∑

i=1

min
u,v
‖ x̂i − x(u, v,p, a, t) ‖2 . (4.10)

Obviously Q2 could now be minimized directly, after having searched for theAlternated
minimization (shortest) surface-distances dx̂i

of all measuring points (e.g. proposed by [Ker87],
[Gaw89] or especially for polynomial surfaces by [Hos92], [MYL92]).

min
p,a,t

Q2(p, a, t) = min
p,a,t

n∑
i=1

d2
x̂i

= min
p,a,t

n∑
i=1

min
u,v
‖ x̂i − x(u, v,p, a, t) ‖2 (4.11)
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The search for orthogonal distances minu,v ‖ . . . ‖ yields for each measuring point Minimization with fix
footpointsa specific pair of surface coordinates (uM

i , vM
i ) designating the actual footpoint

on the surface. According to (4.11) Q2 is minimized then as a function of p, a
and t. The footpoints, given by (uM

i , vM
i ), stay fixed during this minimization

process. If position/orientation a and t without any dimension parameters p are
fitted, this corresponds to a point-to-point fit which could be performed, e.g., by
the algorithm of section 4.2.

However, the two step minimization (4.11) will not deliver the real minimum. The ’Distance function’
changes by each stepreason is that after searching for the minimum as a function of the parameters

p, a and t, the distances dx̂i
as determined before are not valid any more for the

new values of p, a and t. (This is in contrast to an implicit distance function,
which gives the explicit surface distance of a measuring point for arbitrary values
of these parameters.)

The surface coordinates (uM
i , vM

i ) of the actual footpoint belonging to the i-th Exact surface
coordinates depend on
all other parameters

measuring point are strongly linked to position/orientation and geometry of the
whole surface:

uM
i = uM

i (p, a, t) vM
i = vM

i (p, a, t) . (4.12)

Only by taking into account this correlation while evaluating (4.11) in the form Correlation has to be
taken into account

min
p,a,t

n∑
i=1

‖ x̂i − x(uM
i (p, a, t), vM

i (p, a, t),p, a, t) ‖2 (4.13)

would we obtain the real minimum.

The ’Small-Displacement Screw’ of [BC76] and [BC88] could be interpreted as an ’Small-Displacement
Screw’approach to account for this correlation approximately in the case of small angles

a and without varying the geometry parameters p.

The footpoint-coordinates u∗i , v
∗
i , as defined in section 3.3, are the u, v-values Footpoints on the

bestfitted surfaceyielding shortest distances while inserting the bestfitted surface-parameters p∗, a∗

and t∗

u∗i = uM
i (p∗, a∗, t∗) v∗i = vM

i (p∗, a∗, t∗) . (4.14)

The crux is now that in general we do not dispose of an explicit expression Multiple nested
iteration processesgiving the relation (4.12). So we would have to repeat the normally nonlinear n-

times search for the shortest distances between measuring points and the surface
and then to minimize p, a and t again, etc. (This is analogous to ’Jacobi’-
type iteration instead of ’Gauss-Seidel’-type iteration by the iterative solution
of a linear system of equations: We do not care about the coupling between
two parameter sets handled separately.) Here it would lead to multiple nested
iteration processes. Each of them should converge to arrive to the correct solution
(see numerical example section 6.3.2.4).
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4.3.2 Parametric Objective Function by Splitting u and v

into 2n Parameters

However, even if we cannot define a real distance function which is valid for2n artificially
constructed
parameters

more than one measuring point and one surface at the same time, we are able
to construct a real objective function valid for a set of measuring points actually
taken into consideration. The key step towards achieving this is to split each
parameter u and v into n different parameters

u1, . . . , un and v1, . . . , vn.

(Note: n different parameters, not n different values uM
i of the same parameter

u!)

and consequently x(u, v,p, a, t) into n ’different’ functions,

x1(u1, v1,p, a, t) . . .xn(un, vn,p, a, t) .

By introducing these additional 2n function parameters, we are able to expressObjective function,
valid for whole set of
measuring points

the minimum of the Q2 objective function correctly. (This does not correspond
to the minimization of (4.10) by varying p, a and t, which we discussed in the

preceding section. Remember: min
a

(
min

b
(. . .)

)
6= min

a,b
(. . .) ! ) Thus,

min (Q2(u1, v1 . . . un, vn,p, a, t)) =

min
p,a,t,u1,v1...un,vn

n∑
i=1

‖ x̂i − xi(ui, vi,p, a, t) ‖2 (4.15)

6= min
p,a,t

n∑
i=1

min
ui,vi

‖ x̂i − xi(ui, vi,p, a, t) ‖2 .

Compared to an objective function based on an implicit distance function, theObjective function
with a multitude of
variables

minimum of this objective function has to be found by varying many more pa-
rameters (+2n) than with the other way. Even if we are not interested in the
unknown exact values of these 2n additional parameters, we have to minimize the
objective function depending on all these artificially constructed variables. By
doing so the minimum of

∑n
i=1 d2

i as well as the values for p, a and t are identical
to those delivered by an objective function based on implicit representation.

Thus, we have introduced – in addition to the few known Q2 objective functionsObjective function
equivalent to an
implicit-based one

based on implicit surface representation for the standard elements – a Q2 objective
function for the parametric surface representation which is generally applicable
and has always the same form, for complex/ sculptured surfaces as well as for
standard ones.

Obviously we could construct any other objective function Qm based on an arbi-Others than Gaussian
fit would become too
cost-intensive

trary norm

Lm = m

√√√√ n∑
i=1

dm
i ,
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in the same way. However, this would result in a very complicated system of
equations.

For minimizing the objective function Qm its gradient would have to be set equal Zeroing gradient of
the objective functionto zero:

grad (Qm((u1, v1) . . . (un, vn),p, a, t)) =
n∑

i=1

grad (dm
i (ui, vi,p, a, t)) = 0 .

(4.16)

Theoretically we could apply a standard tool to find the solution of this very large Standard solution
costs too muchsystem of nonlinear equations, but this would become a rather cost and memory

intensive task. On the other hand, for the case m = 2 we can find a solution
which becomes quite simple and practical.

Furthermore, for a norm other than L2, it would not be easy to generate the Automatized
solution-method with
no additional costs

resulting system of equations for arbitrary surfaces and bestfit problems auto-
matically. But considering the case m = 2 (Gaussian least squares) again, it
will be shown in the next section 4.4, how this can be performed quite easily
in a function independent way with nearly no additional costs compared to the
conventional, specialized methods. In addition, it can also be used for surfaces
not yet predefined, simply by adding the new surface functions.

4.4 L2-Norm Bestfit

4.4.1 ’Gauss-Newton’ and Single-Coordinate Residuum

The ’Gaussian’ bestfit (m = 2) offers the two following advantages: 2 advantages for m=2

First, we can approximate the bestfit problem by a linear least squares problem. Gauss-Newton instead
of NewtonUsing the ’Gauss-Newton’-method instead of the ’Newton’-method, this allows us

to bypass the rather complicated system of equations which results from zeroing
the gradient. We construct an overdetermined system of equations which has to
be solved in the least squares sense. This system of equations is linearized around
the actually known values. At the beginning these are the known nominal values
which we can use as a starting point for the iteration process which improves
them step by step, converging to the correct least squares solution.

Second, dealing with the L2-norm, we are able to substitute the original residuum Selecting an other
residuum vectorvector consisting of the individual distances between measuring points and surface

D = (d1, . . . , dn)

by a more appropriate residuum vector.

As we are dealing with orthogonal coordinates, we know that the Pythagoras More suitable
residuals thanks to
’Pythagoras’

theorem holds and thus the squares of distances can be expressed by the sum of
the squares of the individual coordinate differences

d2
i =‖∆xi ‖2= ∆x2

i + ∆y2
i + ∆z2

i . (4.17)
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Thus we have

Q2 =
n∑

i=1

d2
i = ∆XT∆X (4.18)

with
∆X = (∆x1, ∆y1, ∆z1, . . . , ∆xn, ∆yn, ∆zn)

representing the vector, which contains the 3n coordinate differences ∆x, ∆y, ∆z
between the n measuring points

X̂ = (x̂1, . . . , x̂n)

and the n points lying on the surface.

At the beginning these are the n nominal points of the nominal feature in nominalNominal points
mutate to final
footpoints during
bestfit procedure

position/orientation
X̃ = (x̃1, . . . , x̃n) ,

while after the bestfit these are the n unknown footpoints

X̄ = (x̄1, . . . , x̄n)

on the unknown substitute feature in the unknown final position/orientation.

4.4.2 Matrix Equation for Bestfit Solution

Analogously to the abbreviations X̂ for all measuring points and X̃ for all nominalN-point related
vectors points, we use in the following capital boldface letters L to indicate a vector

comprising all parameters referring to all n points. So we use the abbreviation

U = (u1, v1, . . . , un, vn)

for the total of all 2n surfaces coordinates. Furthermore we define the vector

T = (t, . . . , t)

composed of n identical translation vectors t and the matrix

Q(a) =
n⊕

i=1

R(a) .

This is a block diagonal matrix with n identical blocks R(a).

Now we can formulate the bestfit problem by the following simple, overdeterminedBestfit matrix
equation matrix equation which has to be solved in the least squares sense:

Q(a) · (X′(U,p) + T) ≈ X̂ . (4.19)
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4.4.3 Preserving the Structure of Parametric Equations

The above system contains exactly one equation for each coordinate. This helps 1 equation for 1
coordinateto keep the optimization as simple as possible because we can carry out the

position/orientation transformation (3.4) line by line.

The original residuum Inviolate triple-
structureD = (d1, . . . , dn)

which involves the 3 parametric equations in 1 equation has been replaced by the
residuum

∆X = (∆x1, ∆y1, ∆z1, . . . , ∆xn, ∆yn, ∆zn) ,

and this leaves the useful triple structure of the parametric description untouched.
Note: This is not possible when dealing with norms other than the L2-norm.

4.4.4 Optimizing all Unknowns in Parallel

Collecting all unknowns in one vector Vector of all
unknowns

W := (U,p, a, t)

we can express the total of n arbitrary points on the surface as

X(W) := (x1(W) . . .xn(W))

and thus (4.19) becomes a nonlinear least squares problem:

Find W such that
‖ X(W)− X̂ ‖= min . (4.20)

Note: We can write xi(W), even the individual functions xi are not really de- Special structure of
Jacobian matrixpendent on all unknowns appearing in the vector W . This will result in a special

structure of the Jacobian Matrix: Partial derivatives with respect to unappearing
unknowns will vanish!

For the time being we assume that x1 . . .xn all refer to the same surface function. Each measuring point
could belong to an
other surface

The concept that they can refer to different surface functions will prove quite
useful when fitting compound features (see section 6.3).

We can start the iteration with the 2n values of the surface coordinates of the n Starting vector
constituted by all
nominal values

nominal points U0 together with the nominal dimensions p0 and the values a0

and t0 derived from nominal surface-position/orientation

W0 := (U0,p0, a0, t0). (4.21)

By using Gauss-Newton iteration to solve (4.20) we get Gauss-Newton
iteration

J(W)∆W ≈∆X(W) = X̂−X(W), (4.22)
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where J(W) is the Jacobian of the function X(W).

W is refined by increments of ∆W to find the final correction ∆W? by which
the orthogonality condition for local extremum

JT (W + ∆W?)∆X(W + ∆W?) = 0 (4.23)

is satisfied. (∆X(W + ∆W?) is the final residual vector.)

4.5 Separating Geometry from Pos./Orient.

4.5.1 Surface Independence by Splitting the Jacobian

First we analyze the computation of the Jacobian matrix J. Not losing sight ofSplitting off the
surface dependent
part of the Jacobian

surface function independence and separation of geometry from position/orien-
tation, we try to split up the Jacobian matrix into a surface dependent part and
a general part.

From (3.4) we know that a point on a arbitrary surface is not a direct functionX depends indirectly
on U and p of all its unknowns, i.e.:

x(u, v,p, a, t) = x(x′(u, v,p), a, t) . (4.24)

Similarly we have

X(W) = X(U,p, a, t) = X(X′(U,p), a, t), (4.25)

using X′ as an abbreviation for the total of all untransformed coordinates in SPR

X′ = (x′1, . . . ,x
′
n).

Knowing about this functional dependence, we can write for the Jacobian JFormula for Jacobian
computation

J(W) =
∂X

∂W
=

[
∂X

∂X′ ·
[

∂X′

∂U
,

∂X′

∂p

]
,

∂X

∂a
,

∂X

∂t

]
(4.26)

if we define ∂f
∂e

as the partial Jacobian matrixDefinition of the
partial Jacobian

∂f

∂e
:= (Ji,j) = (

∂fi

∂ej

)

of a function
f(g, e,h)

and the basic ruleJacobian of successive
mappings ∂b (c (a))

∂a
=

∂b

∂c
· ∂c

∂a

is applied accordingly.
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In the next section, we will see that only the two partial Jacobians Surface dependent
parts of the Jacobian

∂X′

∂U
and

∂X′

∂p

are fully dependent of the actual surface geometry.

The two partial Jacobians Surface-independent
parts of the Jacobian∂X

∂X′ and
∂X

∂t

are independent of the actual surface geometry, while Mixed part of the
Jacobian

∂X

∂a

can be split further into a surface dependent and a surface independent part.

We assume x′(u, v,p) to be a ’generic’ (or, expressed by an object-oriented term, x′ as a ’generic’
functionto be a ’virtual’) function, which can be substituted – while dealing with the

actual geometry – by the real surface function. So we can define the full Jacobian
∂X
∂W

for the general case.

4.5.2 Automated Generation of the Jacobian

Considering again (4.19) Identifying 2 partial
Jacobians as Q(a)

X(W) = Q(a) · (X′(U,p) + T) ≈ X̂ , (4.27)

we recognize that the partial Jacobian ∂X
∂X′ as well as ∂X

∂T
are identical with the

matrix Q(a):
∂X

∂T
= Q(a) and

∂X

∂X′ = Q(a) .

Thus
∂X

∂t
=

∂X

∂T
· ∂T

∂t
= Q(a) · ∂T

∂t
.

This allows us to write the complete Jacobian matrix as Jacobian written with
Q(a)

J(W) =
∂X

∂W
=

[
Q(a) ·

[
∂X′

∂U
,

∂X′

∂p

]
,

∂X

∂a
, Q(a) · ∂T

∂t

]
. (4.28)

By inserting this decomposition (4.28) and (4.27) into (4.22), equation (4.22) can Multiplication with
the orthogonal matrix
QTbe multiplied – without changing the norm of the residual – from the left side

with the orthogonal matrix QT (a) which results in[
∂X′

∂U
,

∂X′

∂p
, QT (a) · ∂X

∂a
,

∂T

∂t

]
·∆W ≈ QT (a)X̂−X′(U,p)−T(t) . (4.29)
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Now we would like to generate the actual matrix QT · ∂X
∂W

(W) in an automated wayAutomated matrix
generation based only on the calculation of the surface-function and its partial derivatives

in SPR, independent of any position/orientation information

x′ ;
∂x′

∂u
,

∂x′

∂v
;

∂x′

∂p1

. . .
∂x′

∂pg

.

Let us consider starting with the nominal values W0 as defined by (4.21):Iteration starts with
nominal values

W0 = (u10 , v10 . . . un0 , vn0 ,p0, a0, t0) .

By differentiating the components x′i of X′ with respect to the components uj, vjDerivatives to dummy
variables of U we get

∂x′i
∂uj

=
∂x′i
∂vj

= 0 if i 6= j .

In section 4.4.2 we have assumed that all points belong to the same surface x′,All points on the
same surface i.e.,

x′i(ui, vi,p) = x′(u, v,p)

so we getDerivatives to all
surface coordinates U

∂x′i
∂ui

(W0) =
∂x′

∂u
(ui0 , vi0 ,p0) =



∂x′

∂u
(ui0 , vi0 ,p0)

∂y′

∂u
(ui0 , vi0 ,p0)

∂z′

∂u
(ui0 , vi0 ,p0)


and

∂x′i
∂vi

(W0) =
∂x′

∂v
(ui0 , vi0 ,p0) =



∂x′

∂v
(ui0 , vi0 ,p0)

∂y′

∂v
(ui0 , vi0 ,p0)

∂z′

∂v
(ui0 , vi0 ,p0)

 .

The partial Jacobian ∂X′

∂U
then becomes

∂X′

∂U
(W0) =

n⊕
i=1

[
∂x′

∂u
(ui0 , vi0 ,p0)

∂x′

∂v
(ui0 , vi0 ,p0)

]
. (4.30)

By differentiating the components x′i of X′ with respect to the componentsDerivatives to all
geometry-parameters
p

p1 . . . pg of p we get

∂x′i
∂pj

(W0) =
∂x′

∂pj

(ui0 , vi0 ,p0) =



∂x′

∂pj
(ui0 , vi0 ,p0)

∂y′

∂pj
(ui0 , vi0 ,p0)

∂z′

∂pj
(ui0 , vi0 ,p0)

 .
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So we get for the partial Jacobian ∂X′

∂p

∂X′

∂p
(W0) =



∂x′

∂p1
(u10 , v10 ,p0) . . . ∂x′

∂pg
(u10 , v10 ,p0)

...
...

...

∂x′

∂p1
(un0 , vn0 ,p0) . . . ∂x′

∂pg
(un0 , vn0 ,p0)

 . (4.31)

The partial Jacobian ∂T
∂t

is simply Derivatives
to translation
parameters t

∂T

∂t
(W0) =



I3

...

I3

 . (4.32)

We can evaluate the last part of the Jacobian QT (a) · ∂X
∂a

for the value W0 by Derivatives to rotation
parameters a(

QT · ∂X

∂a

)
(W0) = (4.33)

QT (a0) ·
[

Qa Qb Qc

]
·

 X′(U0,p0) 0 0
0 X′(U0,p0) 0
0 0 X′(U0,p0)


where

Qa :=
∂Q

∂a
(a0) =

n⊕
i=1

Ra(a0)

Qb :=
∂Q

∂b
(a0) =

n⊕
i=1

Rb(a0)

Qc :=
∂Q

∂c
(a0) =

n⊕
i=1

Rc(a0) ,

with

Ra =

 0 0 0
x w l
−v −u −k

 Rb =

 −bf −bc −e
kf kc −y
lf lc −z

 Rc =

 −m n 0
−u v 0
−w x 0


where we used the following abbreviations Substitutions

a := sin(a) , b := sin(b) , c := sin(c) , d := cos(a) , e := cos(b) , f := cos(c)[
y k
z l

]
:=

[
a
d

]
·
[

b e
] [

m
n

]
:= e ·

[
c
f

]
[

u v
w x

]
:=

[
y d
z −a

]
·
[

c f
f −c

]
.
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We get some simplification by explicitly carrying out the multiplicationMultiplication by RT

simplifies the
Rx-matrices

QT (a0) ·
[

Qa Qb Qc

]
with

QT ·Qx =
n⊕

i=1

(
RT ·Rx

)
where we get for

RT ·Ra =

 0 − sin(b) − cos(b) sin(c)
sin(b) 0 cos(b) cos(c)

cos(b) sin(c) − cos(b) cos(c) 0

 (4.34)

RT ·Rb =

 0 0 − cos(c)
0 0 − sin(c)

cos(c) sin(c) 0

 (4.35)

RT ·Rc =

 0 1 0
−1 0 0
0 0 0

 . (4.36)

The matrix additionally used hereSurface dependent
part on the right hand
side of the system of
equations

X′(U0,p0) =



x′(u10 , v10 ,p0)

...

x′(un0 , vn0 ,p0)


is the only surface dependent matrix which appears also on the right hand side
of the overdetermined system of equations(

QT (a0) · X̂−T(t0)
)
−X′(U0,p0) .

We see that all 3 remaining, surface dependent matricesAutomatized
construction-process
of 3 surface
dependent matrices X′(U,p) ,

∂X′

∂U
and

∂X′

∂p

can be constructed by evaluating n times the surface function in the simple
SPR x′(u, v,p) plus its partial derivatives ∂x′

∂u
, ∂x′

∂v
and ∂x′

∂pj
at the n locations

(u1, v1) . . . (un, vn).

The structure of this surface dependent part of the full Jacobian always remainsJacobian has always
same structure the same, no matter which surface function x′ is actually involved in the bestfit

process. This allows us to use always the same procedure for any further solutions
of the especially structured system of equations.
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Chapter 5

Solutions

5.1 The Overdetermined Linear System

5.1.1 Solution Methods

Basically there are two possibilities to solve (4.22):Two approaches

First, we can insert equation (4.22) into equation (4.23). Thus we get the well-Normal equations

known Gaussian normal equations. This way we have transformed an overdeter-
mined system of equations into a system with an equal number of equations and
unknowns. Its solution satisfies the overdetermined system of equations in the
least squares sense.

The same result can be obtained by transforming ∆X (given by (4.22)) withOrthogonal
transformations successive orthogonal transformations (Givens or Householder) which have the

property of leaving the L2-norm (of ∆X) unchanged. We will continue doing
this until we arrive at a coordinate system where the solution can be computed
in a trivial way.

From the numerical point of view we prefer the second method due to its increasedDrawbacks and
advantages of both
methods

numerical stability. From the practical point of view, there are some reasons to
prefer the first method, e.g., to economize memory space. Because we solve the
resulting system of equations iteratively, numerical inaccuracies are self-correcting
to a certain extent.

For the two possibilities we will provide solution methods that exploit the specialExploiting structure

structure of the resulting system of equations.

Searching for the most time efficient solution method, we will recognize that aCombined procedure

mixed procedure (Givens combined with normal equations) will give the best
results.

Finally we are considering an alternative method based on singular value decom-Automated handling
of redundancies in the
parametric representa-
tion

position (SVD) which is more cost-intensive but which allows for the automatic
handling of redundancies in the parametric representation. This is especially
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useful while bestfitting standard surfaces or modifying the shape of polynomial
surfaces by simultaneously varying coefficients and surface coordinates.

In short: Givens transformations preserve numerical stability best, normal equa- Summary

tions are most economic regarding memory space, the here proposed mixed pro-
cedure (Givens/ normal equations) is most time efficient, while a combination
with SVD (Givens/ SVD) allows us to treat redundancies in a more general and
automatized manner.

5.1.2 Structure

The structure of the (3n) × (2n + g + 6) matrix QT · ∂X
∂W

, i.e., the structure of Structure stays fixed

the overdetermined system of linear equations to be solved during the solution
process of the nonlinear least squares problem, is always the same (’x’ denotes a
nonzero element):

QT · ∂X

∂W
=

[
∂X′

∂U
,

∂X′

∂p
, QT (a) · ∂X

∂a
,

∂T

∂t

]
=



x x 0 0 · · · 0 0 x · · ·x 1 0 0
x x 0 0 · · · 0 0 x · · ·x 0 1 0
x x 0 0 · · · 0 0 x · · ·x 0 0 1

0 0 x x · · · 0 0 x · · ·x 1 0 0
0 0 x x · · · 0 0 x · · ·x 0 1 0
0 0 x x · · · 0 0 x · · ·x 0 0 1

...
...

...
... · · · ...

...
... · · · ...

...
...

...

0 0 0 0 · · · x x x · · ·x 1 0 0
0 0 0 0 · · · x x x · · ·x 0 1 0
0 0 0 0 · · · x x x · · ·x 0 0 1



. (5.1)

We can see that first the system is extremely sparse (especially for a large number Known sparse
structureof measuring points n, when ∂X′

∂U
becomes large), second we know the locations

of the zeros in advance. So we can omit them from the beginning, i.e., we do
not have to store them, and we are using an algorithm not involving them in any
calculations.

This will give us a very efficient solution method with computational costs and Efficient solution
methodmemory demands growing no more than linearly with the number of measuring

points. This fact makes FUNKE competitive also in the field of standard surfaces
compared with conventional, implicit distance-function based algorithms.



5.2. SOLUTION BY ORTHOGONAL TRANSFORMATIONS 55

5.2 Solution by Orthogonal Transformations

5.2.1 Givens Rotations Interpreted as Geometrical Trans-
formations

Permuting the equations, by separating the x, y and z coordinate blocks accordingPermutation of
equations to (x1, y1, z1, . . . , xn, yn, zn) 7→ (x1, . . . , xn, y1, . . . , yn, z1, . . . , zn), yields



x x 0 0 · · · 0 0 x · · · x 1 0 0
0 0 x x · · · 0 0 x · · · x 1 0 0
...

...
...

...
. . .

...
...

... · · · ...
...

...
...

0 0 0 0 · · · x x x · · · x 1 0 0

x x 0 0 · · · 0 0 x · · · x 0 1 0
0 0 x x · · · 0 0 x · · · x 0 1 0
...

...
...

...
. . .

...
...

... · · · ...
...

...
...

0 0 0 0 · · · x x x · · · x 0 1 0

x x 0 0 · · · 0 0 x · · · x 0 0 1
0 0 x x · · · 0 0 x · · · x 0 0 1
...

...
...

...
. . .

...
...

... · · · ...
...

...
...

0 0 0 0 · · · x x x · · · x 0 0 1



.

Permuting the unknowns (u1, v1, . . . , un, vn) 7→ (u1, . . . , un, v1, . . . , vn) yieldsPermutation of
unknowns 

x 0 · · · 0 x 0 · · · 0 x · · · x 1 0 0
0 x · · · 0 0 x · · · 0 x · · · x 1 0 0
...

...
. . .

...
...

...
. . .

...
... · · · ...

...
...

...
0 0 · · · x 0 0 · · · x x · · · x 1 0 0

x 0 · · · 0 x 0 · · · 0 x · · · x 0 1 0
0 x · · · 0 0 x · · · 0 x · · · x 0 1 0
...

...
. . .

...
...

...
. . .

...
... · · · ...

...
...

...
0 0 · · · x 0 0 · · · x x · · · x 0 1 0

x 0 · · · 0 x 0 · · · 0 x · · · x 0 0 1
0 x · · · 0 0 x · · · 0 x · · · x 0 0 1
...

...
. . .

...
...

...
. . .

...
... · · · ...

...
...

...
0 0 · · · x 0 0 · · · x x · · · x 0 0 1



With 3n Givens rotations we can triagonalize the sparse part of the matrix. (TheTriagonalization by
Givens rotations
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symbol ’o’ stands for an eliminated element.)

x 0 · · · 0 x 0 · · · 0 x · · · · · · x
0 x · · · 0 0 x · · · 0 x · · · · · · x
...

...
. . .

...
...

...
. . .

...
... · · · · · · ...

0 0 · · · x 0 0 · · · x x · · · · · · x

o 0 · · · 0 x 0 · · · 0 x · · · · · · x
0 o · · · 0 0 x · · · 0 x · · · · · · x
...

...
. . .

...
...

...
. . .

...
... · · · · · · ...

0 0 · · · o 0 0 · · · x x · · · · · · x

o 0 · · · 0 o 0 · · · 0 x · · · · · · x
0 o · · · 0 0 o · · · 0 x · · · · · · x
...

...
. . .

...
...

...
. . .

...
... · · · · · · ...

0 0 · · · o 0 0 · · · o x · · · · · · x



(5.2)

We obtain this by constructing a single Givens rotation by selecting the two Correspondence
between a Givens
rotation and a
geometrical rotation

corresponding rows from 2 of the 3 x-, y-, z-coordinate blocks. So the resulting
Givens rotation is always from one of the 3 forms, (3.6),(3.7) or (3.8). Thus, it can
be interpreted as a real geometrical rotation. First, to zero the leading element
of the i-th row of the y-coordinate block, we rotate this row in combination with
the i-th row of the x-coordinate block. Second, to zero the leading element of the
i-th row of the z-coordinate block, we rotate this row in combination with the
i-th row of the x-coordinate block. Third, to zero again the leading element of
the i-th row of the z-coordinate block, we rotate this row in combination with the
i-th row of the y-coordinate block. By this, we see that these three consecutive
Givens rotations represent the geometrical 3D-rotation

R(ai) = Rx(ai) ·Ry(bi) ·Rz(ci) ,

In total we get as many 3D-rotations as we have measuring points.

Remembering that the first 2n columns represent the 2n partial derivatives of the Transformed nor-
mals have only z-
component

actual surface points with respect to their surface coordinates u and v, we see that
all n transformed ∂x

∂u
have an x-component only. Furthermore all n transformed

cross products between each pair of partial derivatives ∂x
∂u

and ∂x
∂v

, (∂x
∂u
× ∂x

∂v
) have

a z-component only (
∂x

∂u
× ∂x

∂v

)?

=

 0
0
x


because the transformed ∂x

∂u
and ∂x

∂v
are of the form

∂x

∂u

?

=

 x
0
0

 and
∂x

∂v

?

=

 x
x
0

 .
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The cross-product ∂x
∂u
× ∂x

∂v
points always into the direction of the actual surfaceActual surface normal

normal n(u, v) (
∂x

∂u
× ∂x

∂v

)
(u, v) ∼ n(u, v) . (5.3)

Geometrically this means, that each difference vector x̂i − x(ui, vi,p) is trans-Rotation of difference
vectors into a special
tangential plane
coordinate system

formed by a (triple) rotation Rx(a) · Ry(b) · Rz(c) in a coordinate system which
consists of the actual ∂x

∂u
as the new x-vector, a second vector of the actual tan-

gential plane as the new y-vector and finally a new z-vector having the same
direction as the actual surface normal vector.

It follows that multiplying the original matrix (5.1) from the left side by anMatrix G performs
pre-triagonalization orthogonal matrix G of the form

G :=
n⊕

i=1

R(ai) (5.4)

with the geometrical 3D rotations R(a1), R(a2), . . . , R(an) has the same
effect as the above operations (apart from the permutations of equations and
unknowns).

Once we can determine these 3D-rotations by a purely algebraic method (whichMerging 3 successive
rotations is numerically most stable) by determining 3 successive Givens rotations without

executing them immediately.

Based on the above geometrical considerations we can furthermore express R asR(u,v) as an analytic
function of u, v an analytic function of u, v with the help of the following geometric algorithm:

1. CalculateAlgorithm
for calculating R
directly r1(u, v) =

∂x
∂u

‖ ∂x
∂u
‖

(5.5)

2. Calculate

r?
2 =

∂x

∂v
− (r1,

∂x

∂v
) · r1 (5.6)

3. Calculate

r2(u, v) =
r?
2

‖ r?
2 ‖

(5.7)

4. Calculate

r3(u, v) = r1 × r2 (5.8)

5. Form

R(u, v) =

 rT
1 (u, v)

rT
2 (u, v)

rT
3 (u, v)

 (5.9)
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From Geometrical explana-
tion of the algorithm

 x
0
0

 = R · ∂x

∂u
and

 0
0
x

 = R ·
(

∂x

∂u
× ∂x

∂v

)

it follows that

RT ·

 1
0
0

 =
∂x
∂u

‖ ∂x
∂u
‖

= r1 and RT ·

 0
0
1

 =
n

‖ n ‖
.

From the construction of r2 (Gram-Schmidt-step) it follows that ‖ r2 ‖= 1, that it
is orthogonal to r1, and that it lies in the tangential plane. From the construction
of r3 it follows that r3 is the normalized direction vector n

‖n‖ of the tangential
plane and that r1, r2 and r3 establish a right hand coordinate system. Thus we
get

RT ·

 0
1
0

 = r2

and it is shown that R can be constructed by step 5.

Step two of the above algorithm (constructing an orthogonal vector to r1 by Improving step 2

Gram-Schmidt) could be unstable. Practically this would occur if the u, v-
isoparametric lines would nearly coincide. A usual method to avoid numerical
instability in this case is to re-orthogonalize r?

2 by repeating step 2, substituting
∂x
∂v

by the still inaccurate r?
2.

Calculating directly the matrices R(ai) is somewhat less cost-intensive than suc- Triple rotation R(ai)
costs lesscessive single Givens rotations. We substitute 3 single rotations, each taking 6

floating point operations (flops) (=total of 18 flops), by 1 3D-rotation taking 15
flops. Furthermore we save the transformation of the submatrix ∂X

∂T
because we

know that we can directly write

G ·QT · ∂X

∂W
=



x x 0 0 · · · 0 0 x · · · x
o x 0 0 · · · 0 0 x · · · x R(a1)
o o 0 0 · · · 0 0 x · · · x
0 0 x x · · · 0 0 x · · · x
0 0 o x · · · 0 0 x · · · x R(a2)
0 0 o o · · · 0 0 x · · · x
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 · · · x x x · · · x
0 0 0 0 · · · o x x · · · x R(an)
0 0 0 0 · · · o o x · · · x



. (5.10)

Matrix (5.10) can be brought into the triagonalized form (5.2) by permutations Equation-permutation
matrixof equations and unknowns as described above. We define a matrix Pe with
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dimension 3n which performs the permutation of equations

Pe :=



1 0 0 0 0 0 0 · · · 0 0 0
0 0 0 1 0 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 1 0 0

0 1 0 0 0 0 0 · · · 0 0 0
0 0 0 0 1 0 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 1 0

0 0 1 0 0 0 0 · · · 0 0 0
0 0 0 0 0 1 0 · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 0 · · · 0 0 1



. (5.11)

To arrange the equations, Pe has to be applied from the left side.

For the permutation of unknowns we define the matrix Pu with dimension 2n+g+6Unknown-permutation
matrix

Pu :=



1 0 · · · 0 0 0 · · · 0 0 · · · 0
0 0 · · · 0 1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 1 · · · 0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 0 · · · 1 0 · · · 0

0 0 · · · 0 0 0 · · · 0 1 · · · 0
...

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 · · · 0 0 · · · 1



. (5.12)

To arrange the unknowns, Pu has to be applied from the right side.

By transforming the system of equations (4.22) by all these matrices we get anExplicit expression for
the pre-triangular
form

explicit expression, which the pre-triangular form (5.2) of the Jacobian is part of:

(Pe ·G ·QT · J(W) · Pu) · (Pu
T ·∆W) ≈ Pe ·G ·QT · (X̂−X(W)) . (5.13)

Because all these transformations are orthogonal we do not change the solutionOrthogonal transfor-
mations do not
change solution

of the original, overdetermined system of equations (4.22). Starting from (5.13)
we can triagonalize the matrix conventionally by further Givens rotations.

Using the method described above, we have fully taken advantage of the factExploiting sparse
structure that the matrix is sparse for a large number of measuring points. For backward

substitution, we can also take advantage of this by a specialized implementation.
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As we exactly know the locations of the zeros in the matrix we can skip them
during backward substitution. Additionally we can save memory space by not
working with the standard matrix representation but implementing the special
matrix structure shown above.

So with Givens Rotations we obtain the following computational cost, which de- Costs of ’Givens’

pends linearly on the number of measuring points n:

Multiplic. Additions Flops

Pre-Triag. 9(g + 5)n + 6(g + 5)n = (15g + 75)n
Nrm.Triag. 2(g + 6)2n + (g + 6)2n = (3g2 + 36g + 108)n
Back.Subst. (2g + 15)n + # mult. = (4g + 30)n

+ (g+6)2

2
+(g + 6)2

Total (3g2 + 55g + 213)n + (g + 6)2

Note: n � g !

(’# mult.’ in the third column indicates that the number of additions is the same
as the number of multiplications.)

5.2.2 Polynomial Surfaces

The special case of a polynomial surface is a very important one, especially in Polynomial surface:
Important special casethe CAD-field. So, while dealing with data coming from a CAD-interface, it

is important to have an algorithm which performs exact bestfit on this kind
of surface representation in an efficient way. Today these algorithms are not
available in state-of-the-art software systems.

Different types of base polynomials pkl(u, v) exist: Standard polynomials, Bézier Different types of
base polynomialspolynomials, b-splines, etc. They can be converted to each other by linear trans-

formations because they cover the same linear space as long as they have the
same degree in u and v direction.

We can define a general polynomial surface x′(u, v,p) of degree s/t by Definition of a
polynomial surface

x′(u, v,p) =
s∑

k=0

t∑
l=0

axkl
· pkl(u, v)

y′(u, v,p) =
s∑

k=0

t∑
l=0

aykl
· pkl(u, v)

z′(u, v,p) =
s∑

k=0

t∑
l=0

azkl
· pkl(u, v) .

From the mathematical point of view, especially with regard to FUNKE, there Specialities

are some specialities of a polynomial surface function to be taken into consid-
eration. First a triple polynomial as defined above has a much larger vector p
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than a standard surface. The components are identical to the polynomial coeffi-
cients. Second, the partial derivatives with respect to these geometry parameters
(polynomial coefficients) p are represented by the base polynomials. Finally, we
cannot describe position/orientation and geometry by really independent param-
eters. They depend on each other.

That is to say that a polynomial transformed by an arbitrary roto-translationRoto-translation of a
polynomial (1.13) remains a polynomial of the same degree but with different coefficients.

They describe the identical geometry but in another position/orientation. The
individual coefficients transform like x, y, z-coordinates:

R · (x′(u, v,p) + t) =

R ·
(

s∑
k=0

t∑
l=0

akl · pkl(u, v) + t

)
=

s∑
k=0

t∑
l=0

a?
kl · pkl(u, v) (5.14)

with

a?
kl = R · (akl + t) for k = l = 0 (if p00(u, v) ≡ 1)

and

a?
kl = R · akl for k, l > 0

Thus position and orientation are implicitly contained in the polynomial coeffi-No simultaneous
variation of all
parameters

cients. As a consequence, we should not vary a and t simultaneously with p, as
we would get a singular system of equations otherwise.

Considering polynomial fit, two different problems are distinguished in sectionTwo different
problems 1.2.5 (see also [GR89]):

One of these – especially important in the CAD-field – is the approximationApproximation

problem (geometrical fit) of a sculptured surface (surface not describable by an-
alytical functions). Normally this problem leads to a system of linear equations
for the polynomial coefficients. A more sophisticated approach ([Hen74], [SH76],
[BCF92]), where the surface coordinates u and v are varied additionally, leads to
a nonlinear optimization process. Dealing with a sculptured surface (constructed
by a multitude of polynomials) instead of dealing with a single polynomial, the
approximation problem can be solved in a hundred different ways, for better or
worse. It cannot even be decided which way is really the best. Research on this
topic increased especially in the last few years [Sch94], when powerful optical
measuring devices which can deliver a lot of measuring points (≥ 250′000) in a
few seconds became available [Bre93], [Wil93].

The second problem, especially important in CM and in the CAQ/CAM-field,Position/orientation
bestfit is the position/orientation fit of a sculptured surface. In contrast to the first

problem, this can be solved only in one single way for any given objective function.
Taking into account what we said above, we can correctly solve this problem only
by separating position/orientation from geometry, the concept FUNKE is based
on. We have to freeze the geometry parameters p and to vary the position/
orientation parameters a and t only. So, we can form the system of equations
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for bestfit in the same way as we would fit a surface containing no geometry
parameters (g = 0) (e.g. a plane).

The former problem, i.e., the approximation problem, is covered by FUNKE Both covered by
FUNKEas well. We can choose an approximation with (the more sophisticated way)

or without simultaneous variation of the surface coordinates u and v. Because
orthogonal transformations give more numerical stability, it is reasonable to use
them for solving the bestfit problem for high degree surfaces. Fitting polynomial
coefficients with simultaneous variation of the surface coordinates u and v is
rather cost-intensive. We should therefore exploit all possible simplifications for
this case.

First, by varying the coefficients of a polynomial surface the terms including the No rotat./transl.-
derivativespartial derivatives to rotation and translation can be ignored because a and t are

frozen. Second, if we use the same base polynomials for all 3 coordinates we have
the same derivatives to the geometry parameters for all 3 coordinates.

Instead of (5.1) we have in this case: Special ’polynomial’
structure

xu(1)
xv(1)

0 0 · · · 0 p00(1)
· I · · · pst(1) · I

0 0 xu(2)
xv(2)

· · · 0 p00(2)
· I · · · pst(2) · I

...
...

...
...

...
...

...
...

...

0 0 0 0 · · · xv(n)
p00(n)

· I · · · pst(n)
· I


, (5.15)

where the abbreviations xu(i)
, xv(i)

mean the vectors

xu(i)
:=

∂x′

∂u
(ui, vi,p) and xv(i)

:=
∂x′

∂v
(ui, vi,p)

and the abbreviations p00(i)
. . . pst(i) mean the scalar values

p00(i)
:= p00(ui, vi), . . . , pst(i) := pst(ui, vi)

of the s · t scalar basic polynomials pkl.

Furthermore we can compute the pre-triagonalized form of the resulting system of Pre-triag.form as a
function of u, vequations as an explicit function of the surface coordinates (u, v) by using (5.5),

(5.6), (5.7), (5.8) and (5.9). This is especially advantageous for polynomials.

So G ·QT · ∂J
∂W

simplifies to: Simplified form
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x?
u(1)

x?
v(1)

0 · · · 0 0

o y?
v(1)

0 · · · 0 0 p00(1)
·R(u1, v1) · · · pst(1) ·R(u1, v1)

o o 0 · · · 0 0

0 0 x?
u(2)

· · · 0 0

0 0 o · · · 0 0 p00(2)
·R(u2, v2) · · · pst(2) ·R(u2, v2)

0 0 o · · · 0 0

...
...

...
...

...
...

...
...

...

0 0 0 · · · x?
u(n)

x?
v(n)

0 0 0 · · · o y?
v(n)

p00(n)
·R(un, vn) · · · pst(n)

·R(un, vn)

0 0 0 · · · o o


(5.16)

where

x?
u(i)

:= R(ui, vi) · xu(i)
=

 ‖ xu(i)
‖

0
0

 (5.17)

and

x?
v(i)

:= R(ui, vi) · xv(i)
=

 rT
1 (ui, vi) · xv(i)

‖ r?
2(ui, vi) ‖

0

 . (5.18)

In (5.17) we have taken into account that rT
1 · xu(i)

=‖ xu(i)
‖ based on theSimplifications using

(5.5),(5.6),(5.7)
definition (5.5) of r1. In (5.18) we have taken into account that rT

2 · xv(i)
=‖ r?

2 ‖
based on the definition (5.7) of r2 and the definition (5.6) of r?

2. If the u, v-
isoparametric lines intersect at right angles, i.e, xT

u(i)
· xv(i)

= 0 (see section 5.3.3)

we can replace (5.17) and (5.18) by

x?
u(i)

=

 ‖ xu(i)
‖

0
0

 (5.19)

and

x?
v(i)

=

 0
‖ xv(i)

‖
0

 . (5.20)

Thus we have discussed all possible simplifications for polynomials.

5.3 Solution by Normal Equations

5.3.1 Automated Generation of Normal Equations

Using normal equations is a numerically less stable way to solve (4.22) than solv-Saving memory space
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ing it by orthogonal transformations as discussed in the previous section. On the
other hand, there is some saving of memory space. We achieve this by calculating
directly the normal equations without explicitly forming the overdetermined sys-
tem of equations. This could be of some importance when dealing with a large
number of measuring points. Furthermore it is useful to consider the normal
equations to obtain some theoretical insight and for comparisons.

The system of normal equations can be split up into subparts Sub-matrices
UT U UT P UT A UT T
P T U P T P P T A P T T
AT U AT P AT A AT T
T T U T T P T T A T T T

 ·∆W =


UT D
P T D
AT D
T T D

 (5.21)

where

U :=
∂X′

∂U
P :=

∂X′

∂p

A := QT (a) · ∂X

∂a
T :=

∂T

∂t

D := QT (a)X̂−X′(U,p)−T .

First, we define the i-th actual surface point as Function-value in SPR

x(i) =

 x(i)

y(i)

z(i)

 := x′(ui, vi,p) =

 x′(ui, vi,p)
y′(ui, vi,p)
z′(ui, vi,p)

 , (5.22)

and further the partial derivatives at the i-th footpoint as Partial derivatives in
SPR

xu(i)
=

 xu(i)

yu(i)

zu(i)

 :=
∂x′

∂u
(ui, vi,p) =


∂x′

∂u
(ui, vi,p)

∂y′

∂u
(ui, vi,p)

∂z′

∂u
(ui, vi,p)

 (5.23)

xv(i)
=

 xv(i)

yv(i)

zv(i)

 :=
∂x′

∂v
(ui, vi,p) =


∂x′

∂v
(ui, vi,p)

∂y′

∂v
(ui, vi,p)

∂z′

∂v
(ui, vi,p)

 (5.24)

and

xpj(i)
=


xpj(i)

ypj(i)

zpj(i)

 :=
∂x′

∂pj

(ui, vi,p) =


∂x′

∂pj
(ui, vi,p)

∂y′

∂pj
(ui, vi,p)

∂z′

∂pj
(ui, vi,p)

 . (5.25)

We define the difference vector between the i-th measuring point and its footpoint Coordinate differences

as
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∆x(i) =

 ∆x(i)

∆y(i)

∆z(i)

 := RT (a)x̂i − x′(ui, vi,p)− t . (5.26)

Additionally we define for each point 3 auxiliary vectorsAuxiliary vectors

xa(i)
:= RT (a) ·Ra(a) · x′(ui, vi,p)

xb(i) := RT (a) ·Rb(a) · x′(ui, vi,p)

xc(i) := RT (a) ·Rc(a) · x′(ui, vi,p) .

By using (4.34), (4.35) and (4.36) we get

xa(i)
=

xa(i)

ya(i)

za(i)

 =

 −sin(b)y(i)−cos(b) sin(c)z(i)

sin(b)x(i)+cos(b) cos(c)z(i)

cos(b) sin(c)x(i)−cos(b) cos(c)y(i)

 (5.27)

xb(i) =

xb(i)

yb(i)

zb(i)

 =

 −cos(c)z(i)

−sin(c)z(i)

cos(c)x(i)+sin(c)y(i)

 (5.28)

xc(i) =

xc(i)

yc(i)

zc(i)

 =

 y(i)

−x(i)

0

 . (5.29)

Thus we can express these subparts explicitly. From the diagonal subparts weExplicit subparts

have only to calculate the upper part because they are symmetric (the corre-
sponding elements are indicated by (%)) :

UT U =



xT
u(1)
· xu(1)

xT
u(1)
· xv(1)

0 · · · 0 0 0

% xT
v(1)
· xv(1)

0 · · · 0 0 0

...
...

... · · · ...
...

...

0 0 0 · · · 0 xT
u(n)
· xu(n)

xT
u(n)
· xv(n)

0 0 0 · · · 0 % xT
v(n)
· xv(n)



P T P =



n∑
i=1

xT
p1(i)
· xp1(i)

n∑
i=1

xT
p1(i)
· xp2(i)

· · ·
n∑

i=1
xT

p1(i)
· xpg(i)

%
n∑

i=1
xT

p2(i)
· xp2(i)

· · ·
n∑

i=1
xT

p2(i)
· xpg(i)

...
...

. . .
...

% % · · ·
n∑

i=1
xT

pg(i)
· xpg(i)


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AT A =



n∑
i=1

xT
a(i)
· xa(i)

n∑
i=1

xT
a(i)
· xb(i)

n∑
i=1

xT
a(i)
· xc(i)

%
n∑

i=1
xT

b(i)
· xb(i)

n∑
i=1

xT
b(i)
· xc(i)

% %
n∑

i=1
xT

c(i)
· xc(i)



T T T =


n 0 0

% n 0

% % n



UT P =



xT
u(1)
· xp1(1)

xT
u(1)
· xp2(1)

· · · xT
u(1)
· xpg(1)

xT
v(1)
· xp1(1)

xT
v(1)
· xp2(1)

· · · xT
v(1)
· xpg(1)

xT
u(2)
· xp1(2)

xT
u(2)
· xp2(2)

· · · xT
u(2)
· xpg(2)

...
... · · · ...

xT
v(n)
· xp1(n)

xT
v(n)
· xp2(n)

· · · xT
v(n)
· xpg(n)



UT A =



xT
u(1)
· xa(1)

xT
u(1)
· xb(1) xT

u(1)
· xc(1)

xT
v(1)
· xa(1)

xT
v(1)
· xb(1) xT

v(1)
· xc(1)

xT
u(2)
· xa(2)

xT
u(2)
· xb(2) xT

u(2)
· xc(2)

...
...

...

xT
v(n)
· xa(n)

xT
v(n)
· xb(n)

xT
v(n)
· xc(n)


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UT T =



xu(1)
yu(1)

zu(1)

xv(1)
yv(1)

zv(1)

xu(2)
yu(2)

zu(2)

...
...

...

xv(n)
yv(n)

zv(n)



P T A =



n∑
i=1

xT
p1(i)
· xa(i)

n∑
i=1

xT
p1(i)
· xb(i)

n∑
i=1

xT
p1(i)
· xc(i)

n∑
i=1

xT
p2(i)
· xa(i)

n∑
i=1

xT
p2(i)
· xb(i)

n∑
i=1

xT
p2(i)
· xc(i)

...
...

...

n∑
i=1

xT
pg(i)
· xa(i)

n∑
i=1

xT
pg(i)
· xb(i)

n∑
i=1

xT
pg(i)
· xc(i)



P T T =



n∑
i=1

xp1(i)

n∑
i=1

yp1(i)

n∑
i=1

zp1(i)

n∑
i=1

xp2(i)

n∑
i=1

yp2(i)

n∑
i=1

zp2(i)

...
...

...

n∑
i=1

xpg(i)

n∑
i=1

ypg(i)

n∑
i=1

zpg(i)



AT T =



n∑
i=1

xa(i)

n∑
i=1

ya(i)

n∑
i=1

za(i)

n∑
i=1

xb(i)

n∑
i=1

yb(i)

n∑
i=1

zb(i)

n∑
i=1

xc(i)

n∑
i=1

yc(i)

n∑
i=1

zc(i)


.

For the right hand side we getConstant vector on
the right hand side
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UT D =



xT
u(1)
·∆x(1)

xT
v(1)
·∆x(1)

...

xT
u(n)
·∆x(n)

xT
v(n)
·∆x(n)



P T D =



n∑
i=1

xT
p1(i)
·∆x(i)

n∑
i=1

xT
p2(i)
·∆x(i)

...

n∑
i=1

xT
pg(i)
·∆x(i)



AT D =



n∑
i=1

xT
a(i)
·∆x(i)

n∑
i=1

xT
b(i)
·∆x(i)

n∑
i=1

xT
c(i)
·∆x(i)


T T D =



n∑
i=1

∆x(i)

n∑
i=1

∆y(i)

n∑
i=1

∆z(i)


.

This shows the following: At each point i (1 ≤ i ≤ n) we can evaluate Evaluating the surface
function and its
partial derivatives on
n locations

x(i) , xu(i)
, xv(i)

, xp1(i)
. . .xpg(i)

(5.30)

by means of the given surface defining parametric function.

Based on these values we can also calculate for each point i: Evaluating the
auxiliary vectors on n
locations

∆x(i) , xa(i)
, xb(i) , xc(i) . (5.31)

Thus we have everything to generate the system of equations in a general way
and independent of the actual surface.

The computational cost to form the normal equations is Costs to form the
normal equations
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Multiplic. Additions Flops

UT U n · 9 + n · 6 = 15n

P T P 3ng2

2
+ # mult. = 3g2n

AT A 3 · n · 3 + 3 · n · 2 + # mult. = 30n
T T T 0 + 0 = 0
UT P 2n · g · 3 + 2n · g · 2 = 10gn
UT A 2 · 2n · 3 + 1 · 2n · 2 + 2 · 2n · 2 + 1 · 2n · 1 = 26n
UT T 0 + 0 = 0
P T A 2 · ng · 3 + 1 · ng · 2 + # mult. = 16gn
P T T 0 + 3gn = 3gn
AT T 0 + 2 · n · 3 + 1 · n · 2 = 8n
UT D 2n · 3 + 2n · 2 = 10n
P T D n · g · 3 + # mult. = 6gn
AT D 2 · n · 3 + 1 · n · 2 + # mult. = 16n
T T D 0 + 3n = 3n

Total (3g2 + 35g + 108)n

which is again a linear function of the number of measuring points n!

5.3.2 Solving the Normal Equations

The whole system of normal equations (5.21) has the following form (like inNormal equations
structure domain decomposition [GvL89]):



x x 0 0 · · · 0 0 x · · · x
% x 0 0 · · · 0 0 x · · · x
0 0 x x · · · 0 0 x · · · x
0 0 % x · · · 0 0 x · · · x
...

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · x x x · · · x
0 0 0 0 · · · % x x · · · x

% % % % · · · % % x · · · x
...

...
...

...
...

...
...

...
...

...
% % % % · · · % % % · · · x



=



x
...
...
...
...
...
...
...
x



. (5.32)

The above matrix is symmetric; we do not have to store (nor calculate) theExploiting symmetry

elements marked by (%).

Consider performing a normal Gaussian elimination with diagonal pivoting on aTransformed subma-
trix stays symmetric symmetric matrix. Then the quadratic submatrix arising after each column elim-

ination (which consists of the original matrix reduced by the already eliminated
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columns and corresponding rows) is again symmetric:



x x x · · · x
% x x · · · x
% % x · · · x
% % % · · · x
...

...
...

...
...

% % % · · · x


→ 1st column elimination →



x x x · · · x

0 x x · · · x
0 % x · · · x
0 % % · · · x
...

...
...

...
...

0 % % · · · x


.

Proof : Let aik be the element in the i-th row and k-th column of the equa- Proof

tion matrix. Applying the multiplication factor ai1

a11
to this row, we get for the

transformed element

a?
ik = aik − a1k ·

ai1

a11

.

Analogously we could transform the corresponding element in the k-th row and
i-th column with

a?
ki = aki − a1i ·

ak1

a11

.

The postulated symmetry property of the original matrix guarantees that

aik = aki; a1k = ak1; ai1 = a1i .

So, we have

a?
ik = aki − ak1 ·

a1i

a11

= aki − a1i ·
ak1

a11

= a?
ki q.e.d. .

This fact can be used for a very simple algorithm delivering the LDLT decom- LDLT -decomposition

position of a symmetric matrix. The algorithm is even somewhat simpler to
implement than the one proposed in [GvL89] for the same purpose. We modify
the normal Gaussian elimination in such a way that we transform only the part
of a row which belongs to the part above the diagonal. Because we know that the
resulting submatrices are still symmetric we do not have to calculate the lower
part explicitly. This saves about half the cost (same as Cholesky). In the lower
part we store the scaling factors.

Algorithm 1 (in MATLAB notation) Simple algorithm for
LDLT decomposition

for i = 1 : m− 1 {choose pivot row}
for k = i + 1 : m {choose succeeding rows}

A(k, i) = A(k, i)/A(i, i); {calculate scaling factor}
A(k, k : m) = A(k, k : m)− A(k, i) ∗ A(i, k : m); {Gaussian elim.step}

end;
end;
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After the execution of the above code, the upper part of the resulting matrix rep-L and DLT

resents the matrix DLT while the part below the diagonal represents L (without
the trivial diagonal). The costs are about

m3

3
=︸︷︷︸

actual case: m=2n+g+6

(2n + g + 6)3

3
flops .

A further advantage compared to the algorithm in [GvL89] is that we are able toSubstituting upper
part with lower part cut in half the memory demands by a little modification. Because the actually

treated submatrix is still symmetric, we can substitute each element below the
diagonal which has to be accessed with the corresponding element above the
diagonal. Instead of writing the scaling factors into the lower part of the matrix
we overwrite the upper part:

Algorithm 2LDLT decomposition
with the half of
memory demands

for i = 1 : m− 1 {choose pivot row}
for k = i + 1 : m {choose succeeding rows}

f = A(i, k)/A(i, i); {calculate scaling factor}
A(k, k : m) = A(k, k : m)− f ∗ A(i, k : m); {Gaussian elimination step}

end;
A(i, i + 1 : m) = A(i, i + 1 : m)/A(i, i); {transform pivot row}

end;

After the execution of the above code, the diagonal represents the diagonal of theD and LT

matrix D while the part above the diagonal represents LT (without the trivial
diagonal). So we need only half the space in memory.

It is highly recommended to pivot when triagonalizing a matrix with normalPivoting

Gaussian elimination. Using the above algorithm, we cannot freely choose the
pivot element. To preserve symmetry we have to swap equations and unknowns
simultaneously, i.e., to choose a pivot element along the diagonal. But it is shown
in [GvL89] (p.141) that it is absolutely safe not to pivot if we perform the LDLT

factorization on a positive definite matrix. This is the type of matrix we are
dealing with in this case.

We do not use Cholesky at similar costs because we do not have to compute squareComparison
to ’Cholesky’ roots with the modified Gaussian elimination. Because we have a block diagonal

matrix, these operations are significant compared with the total computational
effort. Using the above method, we can inhibit the unnecessary steps with the
zero elements involved by a few modifications to the code.

Algorithm 3LDLT decomposition
on the actual sparse
structure

for i = 1 : m− 1 {choose pivot row}
if rem(i,2)==1, {off-diagonal elements}

f = A(i, i + 1)/A(i, i); {calculate scaling factor}
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A(i, i + 1) = f ; {overwrite}
A(i+1, 2 ∗ n+1 : m) = A(i+1, 2 ∗ n+1 : m) {elim.full columns only}
−f ∗ A(i, 2 ∗ n+1 : m);

end;
for k = 2 ∗ n + 1 : m {full rows only}

f = A(i, k)/A(i, i); {calculate scaling factor}
A(k, k : m) = A(k, k : m)− f ∗ A(i, k : m); {Gaussian elimination step}

end;
A(i, 2 ∗ n + 1 : m) = A(i, 2 ∗ n + 1 : m)/A(i, i); {trsf.full columns only}

end;

We have fully taken advantage of the fact that the matrix is sparse. Analogously, Corresponding
backward substitutionwe can perform the backward substitution.

During a nonlinear optimization process it is quite useful to have the full decom- Useful LDLT

decompositionposition LDLT available. That is, in case we want to save costs, we shall perform
some successive iteration steps with an unchanged Jacobian matrix. The matrix
L can be used then to solve efficiently the systems with same equation matrix
but different right hand side vectors.

Costs for eliminations: Costs for normal
equations elimination

Multiplic. Additions Flops

Off-diag.El. n · (g + 6) + # mult. = (2g + 12)n

Band Matrix 2n(g+6)2

2
+ # mult. = (2g2 + 24g + 72)n

Triag.Matrix (g+6)3

6
+ # mult. = (g+6)3

3

Total (2g2 + 26g + 84)n + (g+6)3

3

Costs for backward substitution: Costs for backward
substitution

Multiplic. Additions Flops

Off-diag.El. n + # mult. = 2n
Band Matrix 2n · (g + 6) + # mult. = (4g + 24)n

Triag.Matrix (g+6)2

2
+ # mult. = (g + 6)2

Total (4g + 26)n + (g + 6)2

We get the total cost using normal equations Total costs

(5g2 + 65g + 218) · n +
(g + 6)3

3
+ (g + 6)2 flops,

again proportional to n.



5.3. SOLUTION BY NORMAL EQUATIONS 73

5.3.3 Discussion of the Normal Equations

There are some elements like planes, cylinders, spheres, toroids, where, in theOrthogonal isopara-
metric lines usual parametric description, the u- and v-isoparametric lines always intersect at

right angles.

Right from the beginning we can take advantage of this fact and form the systemDisappearing
off-diagonal of equations without any off-diagonal elements, i.e., UT U as a diagonal-matrix.

The off-diagonal elements are calculated by

∂x

∂u

T

· ∂x

∂v

and are all equal to zero in these cases. As a consequence the off-diagonal elimi-
nation steps can be omitted.

As an example consider the toroid. It is described in SPR byExample: Toroid

x(u, v, R, r) = (R + r · cos(v)) · cos(u)
y(u, v, R, r) = (R + r · cos(v)) · sin(u)
z(u, v, R, r) = r · sin(v)

.

We get for the directions of the isoparametric lines at location (u, v)

∂x

∂u
=


∂x
∂u

(u, v, R, r)
∂y
∂u

(u, v, R, r)
∂z
∂u

(u, v, R, r)

 =

 −(R + r · cos(v)) · sin(u)
(R + r · cos(v)) · cos(u)

0


and

∂x

∂v
=


∂x
∂v

(u, v, R, r)
∂y
∂v

(u, v, R, r)
∂z
∂v

(u, v, R, r)

 =

 −r · sin(v) · cos(u)
−r · sin(v) · sin(u)

r · cos(v)


So ∂x

∂u

T · ∂x
∂v

vanishes for arbitrary surface coordinates u and v

∂x

∂u

T

· ∂x

∂v
= R sin(u)r sin(v) cos(u) + r cos(v) sin(u)r sin(v) cos(u)

−R cos(u)r sin(v) sin(u) + r cos(v) cos(u)r sin(v) sin(u) + 0 = 0 .

Furthermore there are some elements (e.g. cylinder, sphere) whereVariation of geometry

∂x

∂u

T

· ∂x

∂p
= 0 and

∂x

∂v

T

· ∂x

∂p
= 0 .

This can be interpreted geometrically in the sense that a change of a dimension
always results in the displacement of the surface points in the direction of the
actual surface normal.

We show this for a sphere. It is described in SPR byExample: sphere



74 CHAPTER 5. SOLUTIONS

x(u, v, r) = r · cos(v) · cos(u)
y(u, v, r) = r · cos(v) · sin(u)
z(u, v, r) = r · sin(v)

.

The direction of the isoparametric lines at location (u, v) is

∂x

∂u
=


∂x
∂u

(u, v, r)
∂y
∂u

(u, v, r)
∂z
∂u

(u, v, r)

 =

 −r · cos(v) · sin(u)
r · cos(v) · cos(u)
0


and

∂x

∂v
=


∂x
∂v

(u, v, r)
∂y
∂v

(u, v, r)
∂z
∂v

(u, v, r)

 =

 −r · sin(v) · cos(u)
−r · sin(v) · sin(u)
r · cos(v)

 .

By differentiating with respect to the dimension parameter r we obtain

∂x

∂r
=


∂x
∂v

(u, v, r)
∂y
∂v

(u, v, r)
∂z
∂v

(u, v, r)

 =

 cos(v) · cos(u)
cos(v) · sin(u)
sin(v)

 .

So ∂x
∂u

T · ∂x
∂r

becomes

∂x

∂u

T

· ∂x

∂r
= −r cos(v) sin(u) cos(v) cos(u) + r cos(v) cos(u) cos(v) sin(u) + 0 = 0

and ∂x
∂v

T · ∂x
∂r

∂x

∂v

T

· ∂x

∂r
= −r sin(v) cos(u) cos(v) cos(u)− r sin(v) sin(u) cos(v) sin(u)︸ ︷︷ ︸

−r sin(v) cos(v)(cos(u)2+sin(u)2)

+r cos(v) sin(v) = 0 .

As a consequence the two submatrices UT P and P T U will always vanish.

How can we interpret the sparse structure of (5.32)? We recognize that the Interpretation

vector of the partial derivatives with respect to the surface coordinates ∂X
∂ui

/ ∂X
∂vi

is orthogonal to all others ∂X
∂uj

/ ∂X
∂vj

with j 6= i. But in general it is not orthogonal

to the partial derivatives with respect to the geometry and position/orientation
parameters ∂X

∂p
/ ∂X

∂a
/ ∂X

∂t
. The geometrical interpretation is obvious: Varying

the location of a single surface point does not directly influence the locations of
other surface points, but varying the position/orientation of the whole surface or
its geometry changes the locations of all surface-points. Thus there is an indirect
interaction (via pos./ orient. and geometry of the whole surface) between the
locations of the individual surface points.

If we neglect this correlation between surface coordinates (ui, vi) on the one side Neglected coupling
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and position/orientation plus geometry p, a and t on the other side, by zeroing
the corresponding submatrices in (5.21):


UT U 0 0 0

0 P T P P T A P T T
0 AT P AT A AT T
0 T T P T T A T T T

 ·∆W =


UT D
P T D
AT D
T T D

 , (5.33)

the linearized system of equations is split up into the subsystemSplits into sub-systems

 P T P P T A P T T
AT P AT A AT T
T T P T T A T T T

 ·
 ∆p

∆a
∆t

 =

 P T D
AT D
T T D

 (5.34)

and into n small 2× 2 subsystems of the formn small sub-systems
for the n points [

x x
x x

]
·
(

∆ui

∆vi

)
=

(
x
x

)
. (5.35)

Iterating these 2× 2 sub-systems gives the least squares solutions as functions ofOverdetermined
system of nonlinear
equations

u and v of the n overdetermined nonlinear system of equations

R · (x′(u, v,p) + t) ≈ x̂i .

Solving such a system of equations in the least squares sense corresponds to theNearest distance
search geometrical process of searching for nearest distance from a (measuring) point to

a given surface. See numerical example in section 6.3.2.4 (second chart).

Alternatively solving these n sub-systems with p, a and t obtained by (5.34),Alternating parameter-
fit inserting the results (u1, v1, . . . , un, vn) into (5.34) again, etc., would correspond to

the method explained in 1.2.5 (e.g. mentioned in [Ker87], [Gaw89]). The search for
orthogonal deviations does not occur in parallel with the correction of position/
orientation and geometry. Keeping in mind these mathematical differences we
can now compare this simplified method against FUNKE.

The method will become comparable to our method only in the case that theseWhen comparable?

coupling terms are negligible. In the case where the partial derivatives with
respect to the surface coordinates are constant over the whole surface (e.g. plane:
always the same normal vector), the system of equations can be solved in two
steps: First, determine position/orientation, second, determine the orthogonal
distances. The tangential plane in any point is equivalent to the whole surface,
i.e., we get the correct result after these two steps. The closer a sculptured surface
is to a plane, the better this method will work. On the other hand, already a
simple surface with a slight curvature (e.g. sphere) or a compound feature (see
numerical example in section 6.3.2.4) is absolutely unsuitable for this approach.
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5.4 Cost Optimized Solution

5.4.1 Comparison between ’Givens’ and normal equations

We know that Givens rotations have the advantage of being numerically much Generally normal
equations less
cost-intensive than
’Givens’

more stable than normal equations. However, normal equations need less memory
space than the factoring by Givens rotations, implementing the normal equations
directly (without an overdetermined system) as shown in the last section. This
could be of some importance when dealing with large VDA-FS-Files and a big
number of measuring points. In general, normal equations are about 4× less cost-
intensive than ’Givens’ and 2× less cost-intensive than ’Fast-Givens’ [GvL89].

Comparing now the solution methods of the preceding section purely by cost, we Actually Givens less
cost-intensiverecognize that in our case the solution by ’Givens’ is less cost-intensive than the

solution by normal equations.

We recognize as the reason for this astonishing fact that Givens is more suitable Better
structure-exploitation
by ’Givens’

to exploit the special sparsity. For pre-triagonalization we need (15g + 75)n flops
only. There we have no g2n-dependency. The remaining full matrix which we
have to treat by a ’normal’ Givens-procedure is only of size n× (g + 6). Thus we
get a cost-dependency of 3g2n for its triagonalization by Givens rotations.

On the other hand, the system of normal equations as described in the previous 3x smaller subsystem

section, has dimension (2n + g + 6)× (2n + g + 6). Even though it has a sparsity
structure as well, the cost-dependence is 3g2n for its construction and 2g2n for
its triagonalization. This is a greater g2n-dependence than with Givens because
we have to treat a much larger system of equations in this case.

5.4.2 Mixed Method

Obviously, to optimize cost it is advantageous to use Givens for pre-triagonaliza- Combining ’Givens’
with normal equationstion because this way we arrive – without g2n-dependence – at quite a small

matrix (dimension: n · (g +6)). Afterwards we change to a more efficient solution
method like normal equations or Householder to complete the triagonalization.

Imagine we have already performed the pre-triagonalization. We arrive at an Pre-triagonalized
structureoverdetermined system of equations with the following structure[

C E
On×2n B

]
·
(

x
y

)
≈
(

a
b

)
, (5.36)

where C is a quadratic matrix of dimension 2n and B is n by g + 6. Especially
in our case, C is a triangular matrix with a specific structure.

If we solve now the overdetermined system of equations in the least squares sense Solving an overdeter-
mined subsystem

B · y ≈ b (5.37)
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and compute afterwards the vector x by backsubstitution

x = C−1 · (a− E · y) , (5.38)

we get the same solution

(
x
y

)
as if we would by solving the complete overde-Same solution as the

complete system

termined system of equations (5.36) in the least squares sense.

Let Q and R be the matrices of the QR-decomposition of B, i.e.:QR-Decomposition of
B

B = Q ·R .

ThenConstructing
an orthogonal trans-
formation for the full
system

[
I2n×2n O2n×n

On×2n QT

]

represents an orthogonal matrix which we can use to multiply (5.36) without
influence on its least squares solution. Thus we get[

C E
On×2n R

]
·
(

x
y

)
≈
(

a
QT · b

)
.

Taking into account the special structure of R (nothing but zeros below theSolution by backward
substitution diagonal), we recognize that y is the solution vector of (5.37) as well as the

partial solution vector of (5.36), solving both in the least squares sense.

5.4.3 Separated Solution

In the following we apply the above method to our algorithm. Identifying theIdentifying the partial
matrices partial matrices and vectors C, E, B, a, b, x and y, we can form the equations

(5.37) and (5.38) for the present case.

The vector y contains the parameters primarily interesting for bestfit, i.e., posi-Approach for the
’modified surface-
footpoints’

tion/orientation and geometry p, a and t while x contains the surface coordinate
vector U. The equation for x (5.38) can be interpreted as delivering directly the
necessary corrections to the surface coordinates (ui, vi) of the footpoints if the
surface parameters (y = (p, a, t)) change by ∆p,∆a,∆t).

We have to perform the pre-triagonalization (5.13) to obtain a system of equationsTransforming to
structure (5.36) with structure (5.36). To identify C, E, B, a and b in the system (5.13) we use

the abbreviations U, P,A, T and D of section 5.3.1 for the individual submatrices:

Remember :Abbreviations
U ,P ,A,T ,D

U :=
∂X′

∂U
P :=

∂X′

∂p

A := QT (a) · ∂X

∂a
T :=

∂T

∂t
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D := QT (a)X̂−X′(U,p)−T

G :=
n⊕

i=1

R(ai) defined in (5.4),

and Pe, Pu (defined in (5.11)/(5.12)) are permutation matrices, which permute
the equations (Pe), respectively the unknowns (Pu)

With these abbreviations the pre-triagonalized system of equations (5.13) with Splitting the equation
matrixstructure (5.36) becomes

(Pe ·G ·
[

U P A T
]
· Pu) · (Pu

T ·∆W) ≈ Pe ·G ·D . (5.39)

Furthermore, to get the reduced system of equations (5.37) we have to decompose Decomposing Pe and
PuPe and Pu defined by (5.11) and (5.12) into the corresponding blocks

Pe =

 P(XY )

P( Z )

 and Pu =

 P(U) O

O Ig+6


with the index (X) referring to the equations and unknowns they permute.

Then (5.39) becomes Pre-triagonalization
with sub-matrices

 P(XY )

P( Z )

 · [ GU G
[

P A T
] ]
·

 P(U) O

O Ig+6

 ·
 P(U)

T O

O Ig+6

 ·


∆U

∆p
∆a
∆t





≈

 P(XY )

P( Z )

 ·GD

By a block-wise multiplication we get the submatrices C, E and B and the Block multiplication

subvectors a and b.


P(XY )GUP(U) P(XY )G

[
P A T

]
On×2n P( Z )G

[
P A T

]
 ·


P(U)
T∆U

∆p
∆a
∆t



 ≈
P(XY )GD

P( Z )GD



⇐⇒
[

C E
On×2n B

]
·
(

x
y

)
≈
(

a
b

)
(5.40)
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So the reduced, overdetermined system of equations By = b directly yields theGetting ∆p,∆a,∆t

solutions for ∆p, ∆a and ∆t decoupled from the solution for ∆U:

G(Z) ·
[

P A T
]
·

∆p
∆a
∆t

 ≈ G(Z) ·D (5.41)

with

G(Z) = P(Z) ·G =


rT
3 (a1) · · · 0

0
. . . 0

0 · · · rT
3 (an)

 , (5.42)

where r3(ai) represents the unit normal vector at the i-th surface-point as defined
by the algorithm in section 5.2.1.

Because this reduced, overdetermined system of equations is not sparse like theApplying standard
algorithms complete, overdetermined system, we can apply any standard algorithms to solve

it without losing any performance. The sparsity can be fully exploited in the
pre-triagonalization (5.13).

We must still solve the equation Cx = a − Ay (5.38). In the actual case, xEquation for ∆U

corresponds to P T
(U)∆U and C corresponds to P(XY )GUP(U), thus we get

(
P(XY )GUP(U)

)
·
(
P T

(U)∆U
)

= P(XY )GD − P(XY )G
[

P A T
]
·

∆p
∆a
∆t

 .

(5.43)

By exploiting the special triagonalized block structure ofConsidering the
special structure of C

C = P(XY )GUP(U) = (cij) ,

we can explicitly give the expressions for the individual elements of ∆U =
(u1,v1 . . . un,vn). For i = 1, . . . , n we get

∆vi =
1

ci+n,i+n

·

D? −
[

P A T
]?
·

∆p
∆a
∆t




i+n

(5.44)

and

∆ui =
1

ci,i

·


D? −

[
P A T

]?
·

∆p
∆a
∆t




i

− ci,i+n · vi

 (5.45)

where we have used the transformed matrices D? and
[

P A T
]?

:

D? = (P(XY )G) ·D and
[

P A T
]?

= (P(XY )G) ·
[

P A T
]

.
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Proceeding like this we get the following costs: Costs for combined
method

Multiplic. Additions Flops

Pre-Triag. 9(g + 5)n + 6(g + 5)n = (15g + 75)n

Nrm.Eq.Gener. (g+6)2n
2

+ # mult. = (g2 + 12g + 36)n

Nrm.Eq.Elim. (g+6)3

6
+ # mult. = (g+6)3

3

Backw.Subst. (g+6)2

2
+ # mult. = (g + 6)2

Calculation ∆U (g + 7)n + (g + 8)n + # mult. = (4g + 30)n

Total (g2 + 31g + 141) · n
+ (g+6)3

3
+ (g + 6)2

5.4.4 Further Cost-Optimizations

Alternatively we can choose another bracketing in (5.43) with which it is possible Calculating with the
original sub-matrices
D,P ,A,Tto use the un-transformed matrices D and

[
P A T

]
. By doing so we can

again reduce the total cost:

G(XY ) · U ·∆U = G(XY ) ·

D −
[

P A T
]
·

∆p
∆a
∆t


 (5.46)

with

G(XY ) = P(XY ) ·G =



rT
1 (a1) · · · 0

0
. . . 0

0 · · · rT
1 (an)

rT
2 (a1) · · · 0

0
. . . 0

0 · · · rT
2 (an)


.

This system splits into n 2× 2-sized, already triagonalized systems of equations, Splits into n 2× 2-
systems[

rT
1 (ai) · xu(i)

rT
1 (ai) · xv(i)

0 rT
2 (ai) · xv(i)

]
·
(

∆ui

∆vi

)
(5.47)

=

r
T
1 (ai)

rT
2 (ai)

·
∆x(i)−

[
xp1(i)

. . .xpg(i)
xa(i)

xb(i) xc(i) I3

]
·

∆p
∆a
∆t




which can be solved independently from each other. (xu(i)
, xv(i)

, xpj(i)
, ∆x(i),

xa(i)
, xb(i) and xc(i) are defined by (5.23), (5.24), (5.25), (5.26), (5.27), (5.28) and

(5.29) and r1 and r2 by the algorithm in section 5.2.1.) Using the definitions (5.5)
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and (5.7) of r1(ui, vi) = r1(ai) and r2(ui, vi) =
r?
2(ui,vi)

‖r?
2(ui,vi)‖ = r2(ai), we can express

(5.47) even more explicitly as a function of (ui, vi) (see (5.17) and (5.18)):[
‖ xu(i)

‖ rT
1 (ui, vi) · xv(i)

0 ‖ r?
2(ui, vi) ‖

]
·
(

∆ui

∆vi

)
(5.48)

=

r
T
1 (ui, vi)

rT
2 (ui, vi)

·
∆x(i)−

[
xp1(i)

. . .xpg(i)
xa(i)

xb(i) xc(i) I3

]
·

∆p
∆a
∆t


 .

In each system of equations it takes 3(g + 3) multiplications and 3(g + 4) addi-
tions to calculate the vector in the round brackets ’(. . .)’, and an additional 15
multiplications and 10 additions to calculate all scalar products involving r1 and
r2, and finally 3 multiplications and 1 addition for the backward substitution.

Forgoing a complete pre-triagonalization with matrix G, we can use (5.42) to getReduced
pre-triagonalization the solutions for ∆p,∆a and ∆t. To visualize the reduction of costs we express

(5.41) explicitly:

rT
3 (a1) ·

[
xp1(1)

. . .xpg(1)
xa(1)

xb(1) xc(1) I3

]
...

...
...

rT
3 (an) ·

[
xp1(n)

. . .xpg(n)
xa(n)

xb(n)
xc(n)

I3

]


·

∆p
∆a
∆t

=



rT
3 (a1)·∆x(1)

...

rT
3 (an)·∆x(n)

 .

(5.49)

We only have to calculate n times the scalar product between each of the vectorsReduced costs

xpj(i)
, xa(i)

, xb(i) , xc(i) and ∆x(i) and the vector r3(ai). This step is 3 times less

cost-intensive than the full pre-triagonalization and needs 3(g+4) multiplications
and 2(g + 4) additions each.

We get the following costs:Costs of this variant

Multiplic. Additions Flops

Reduced Pre-T. 3(g + 4)n + 2(g + 4)n = (5g + 20)n

Nrm.Eq.Gener. (g+6)2n
2

+ # mult. = (g2 + 12g + 36)n

Nrm.Eq.Elim. (g+6)3

6
+ # mult. = (g+6)3

3

Backw.Subst. (g+6)2

2
+ # mult. = (g + 6)2

Calculation ∆U 3(g + 3)n+18n + 3(g + 4)n+11n = (6g + 50)n

Total (g2 + 23g + 106) · n
+ (g+6)3

3
+ (g + 6)2

Thus we have found the most time-efficient method to solve the overdeterminedMost time efficient
method system of linear equations (4.22) which is required for the non-linear optimization

by Gauss-Newton iteration.
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As explained in section 5.1.2, the memory demands as well as the computational Ratio between
computation time and
measuring time
remains constant

costs increase linearly with the number of measuring points by using any of
the solution methods proposed above. All of them exploit the sparse structure.
Practically this means that the ratio between measuring time and computation
time remains constant for an arbitrary number of measuring points.

The above procedure looks quite similar to (5.34) and (5.35), but in contrast Coupling taken into
accountto those equations, here we do not ignore the coupling between the unknowns

∆U and (∆p,∆a,∆t). So we also do not iterate (5.47), as we would do with
(5.35) to find the actual footpoints. Equation (5.47) gives the exact dependence
of ∆ui and ∆vi from (∆p,∆a,∆t), carrying out an infinitesimal step with these
parameters. So we derived the linearization around the actually used parameters
for the correlation (4.12) which was said in section 4.3.1 not to be explicitly
known.

5.5 Solution for Rank Deficient Problems

5.5.1 Problem of Rank Deficiency

When dealing with parametric surfaces it is very important to integrate a mech- Especially standard
surfaces become rank
deficient

anism in the algorithm which correctly handles rank deficiency in the overdeter-
mined system of equations. The problem of rank deficiency especially arises when
bestfitting standard surfaces. It is caused by their rotational and translational
symmetries. For example, if we rotate a cylinder around its axis, it still stays
in the same position/orientation. The same is true for a displacement along the
cylinder axis.

Mathematically speaking, the variation of the rotational parameter c and of the Symmetry causes rank
deficiencytranslational parameter tz is equivalent to a variation of all surface coordinates

(u1,v1 . . . un,vn). The symmetries cause redundancy in the mathematical descrip-
tion. By applying any classical bestfit based on implicit representation we remove
these redundancies by introducing the proper constraints.

With the parametric representation we have introduced in the last sections, ge- Symmetries as trivial
constraintsometry is clearly separated from position/orientation. So all dimension and po-

sition/orientation parameters are explicitly accessible. In contrast to an implicit
representation, they are not hidden here in a non-trivial way. The necessary con-
straints become very simple. In the case of the above example (cylinder with its
axis along the z-axis in SPR) they are

c = const. and tz = const. ,

or equivalently
∂X

∂c
= 0 and

∂X

∂tz
= 0

Interpreted in the geometrical sense, these constraints have an effect similar to Freezing mechanism
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that which would be produced if the corresponding parameters were frozen. So
we can introduce a ’freezing’-mechanism in our algorithm which keeps the appro-
priate parameters fixed (see section 6.2.1). It can be simply realized by deleting
the appropriate columns ∂X

∂Wj
in the Jacobian, or, even better, by not introducing

them right from the beginning.

5.5.2 How to Prevent Rank Deficiency

When dealing with regular surfaces we know these redundancies in advance andSymmetries should be
declared so they can be taken into account by declaring them – in a standardized way –

together with the definition of the surface function. This is described in section
6.2.1 where we will take a closer look at the explicit implementation.

Sculptured surfaces normally do not dispose of any symmetries, but theoreticallySculptured surfaces
with symmetries it is absolutely possible that they do. Consider a standard surface approximated

by a polynomial surface. Of course the polynomial surface will inherit all geo-
metrical symmetries from the standard one. If the approximation were exact,
this would result in rank deficiency which is geometrically but not algebraically
evident.

In practice every approximation has some deficiencies which inhibit any rankSlow convergence
with undeclared
symmetries

deficiency; even so this could lead to problems in the iteration process as it
would converge very slowly against a ’flat’ minimum. (If the system of equations
is nearly singular, the built-in damping-mechanism becomes active and/or the
step length is reduced in advance by increased Levenberg-Marquardt correction-
terms.)

The mechanism described in the next section also allows for the freezing of ar-Freezing interactively

bitrary degrees of freedom (not declared as symmetries). So, after recognizing
the problem, it could be solved manually by additionally freezing the necessary
rotational or translational parameters and restarting the optimization process
again.

In the case that we are not sure about a symmetry or it is desired that any manualAutomatic detection
of rotat./ transl.-
symmetries

interactions should be completely avoided, an algorithm which eliminates such
unexpectedly appearing symmetries automatically proves quite useful. Based on
the freezing-mechanism described above, the problem could be reduced to the
mere detection of an eventually appearing rank deficiency.

However, the reduced system of equations (5.37) is of great benefit in solvingAll redundancies are
moved to the reduced
system of equations

this problem. To (5.37) we can apply standard solutions without losing any
performance, because it is no longer sparse as the full system of equations (5.36)
was. All redundancies will hide now in this system of equations because after
the pre-triagonalization (5.13), the equation matrices for the unknowns (ui, vi)
are fully decoupled from the partial system of equations (5.37). They can be
resolved independently using the results of (5.37) on their right hand side only.

The appropriate remedy to the described ’nearly rank deficiency’ is the methodSVD for near rank
deficiency
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of singular value decomposition (SVD). We perform a SVD of the matrix B =

G(Z)

[
P A T

]
of (5.40):

B = U · Σ · V T , Σ = diag(σ 1 , . . . , σg+6) , (5.50)

where σ 1 ≥ . . . ≥ σg+6 ≥ 0 and U is a n× (g + 6) orthogonal matrix and V is
a (g + 6)× (g + 6) orthogonal matrix. The system B · y ≈ b becomes

U · Σ · V T · y ≈ b or Σ · V T · y ≈ UT · b . (5.51)

By defining the linear combination of the unknown parameters (∆p,∆a,∆t) = Differently weighted
linear combinationsy, as zi := yT · cVi (where cVi means i-th column of V ) we express (5.51)

explicitly as 

σ 1 · z 1

...

σg+6 · zg+6

 = UT · b .

So we recognize, that if σi = 0, then zi may be chosen arbitrarily. Thus this linear Eliminating
redundancycombination of dimension and pos./orient. parameters can be set to an arbitrary

value (e.g. to zero), without changing anything in the corresponding equation.
Since the σi are ordered, there is a σr > 0 and σj = 0 for j = r +1, . . . , g +6. We
thus have rank deficiency if r < g + 6. In this case the solution is not unique and
we compute the minimum solution corresponding to choosing zj = 0 for σj = 0.

This solution is expressed by Solution by the
pseudoinverse:
y = B+b

y = V · Σ+ · UT︸ ︷︷ ︸
B+

·b , Σ+ = diag(
1

σ1

, . . . ,
1

σr

, 0, . . . , 0) (5.52)

where B+ is the pseudoinverse of B and Σ+ the pseudoinverse of Σ.

Changing the value zi of a linear combination of the parameters ((∆p,∆a,∆t) = Small singular values

y), which is multiplied with a rather small singular value σi, does nearly not affect
the right hand side. This causes slow convergence of the Gauss-Newton iteration:
Approaching the resulting flat minimum, the built-in damping mechanism com-
bined with Levenberg-Marquardt correction performs step limitation. Therefore
it is recommended to choose the rank reasonably and set small singular values to
zero.

So we have the following algorithm to prevent slow convergence: Algorithm based on
SVD-decomposition

1. Perform the pre-triagonalization (5.13)

2. Compute the singular value decomposition (5.50) B = UΣV T of the matrix

B = G(Z) ·
[

P A T
]

of the reduced overdetermined system of equations

(5.41)
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3. Determine the rank of the matrix B by considering singular values to be zero
if they are smaller than the tolerance ε = (g + 6) · σmax · εmachine (according
to the recommendation in [PFTV89])

4. Compute the solution y = (∆p,∆a,∆t) according to (5.52) and insert the
corrections ∆p, ∆a and ∆t into the system of equations (5.38) to calculate
the corrections (∆ui, ∆vi) for the next step in the Gauss-Newton-iteration.
Proceeding like this, the parameter corrections y follow the constraints

yT · cVi = 0 for each i where σi ≤ ε .

5.5.3 Discussion

Why we do not use SVD to avoid rank deficiency in any case? There are differentAlways SVD?

reasons against doing so:

First, instead of solving normal equations, we have to perform a singular valueMore cost-intensive

decomposition, which is much more cost-intensive. Second, if we eliminate some
parameters from the beginning, we can save computation time because we reduce
the number of unknowns involved.

But without talking about costs, there are some other reasons too. We shouldDistinguishing
different cases distinguish the case of real rank deficiency from that of nearly rank deficiency.

The case of real rank deficiency would practically appear only in the case when weReal rank deficiency

already have redundancy in the definition of our surface function, for example, if
we were to define the coordinates of the circle-center mx, my as unknown param-
eters in the parametric description of the circle (additionally to the translations
tx, ty, already defined by the general bestfit-algorithm):

x(t, r, mx, my) = mx + r · cos t and y(t, r, mx, my) = my + r · sin t .

Another reason could be, e.g., if we did not properly declare the rotation in the
xy-plane as an appearing symmetry.

Applying SVD to these two cases, we would in fact get a correct result, however,Recognizing the
reasons for rank
deficiency

we have to interpret the appearing redundancies afterwards. In the above exam-
ple, we get an individual value for mx and for tx, and now we should correctly
interpret that the effective center of the circle is

m?
x = mx + tx and m?

y = my + ty .

So we recognize that we cannot bypass any further considerations in these cases.

Another case is the nearly rank deficiency. Practically this could appear, e.g., ifNearly rank deficiency

we try to fit an ellipse through points measured on a circle. (This is only near
rank deficiency because a measured circle would never be an ideal circle.)

If we delete here some small singular values, this could help to get the solutionSteepening the
minimum with quick convergence with a small loss of accuracy to the final result. On the
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other hand, there could be some danger with this procedure, e.g., in the case that
we have to determine a very small elliptical deviation from a circle or if we want
absolutely to guarantee the comparability to any other SW.

However, if we have to steepen such a flat minimum by zeroing certain singular Flat minimum: Bad
measuring point
distribution?

values, we should always know why at all we have to do this. There is always some
danger that there is something wrong with our measurement: A bad distribution
of the measuring points on the surface can cause a flat minimum. From this point
of view, an automatic redundancy elimination is dangerous and should at least be
combined with a warning message. A small change of input data (e.g. measuring
errors) could cause then a large variation of the output data (bestfit parameters).

As we are dealing with a nonlinear iteration process we can choose a strategy, Overcoming singular
locationswhere we decide for each step anew if we want to eliminate the small singular

values or not. This could be an alternative to the damping of the iteration process
or to the reduction of step size by the Levenberg-Marquardt correction. It could
help in the cases where the Jacobian becomes nearly singular during the iteration
process (passing a nearly local minimum or a saddle point), but becomes regular
again near the final solution.

As already mentioned in section 5.5.2, SVD is mainly useful in the case that we are Reducing the number
of independent fit-
parameters

bestfitting a polynomial surface with rotational or translational symmetries and
we do not want to treat it interactively in the way described above. Furthermore,
the above algorithm is important if we change the geometry of a polynomial
surface by varying its coefficients. The problem appearing here is that we have
normally an oversupply of free parameters (all polynomial coefficients) to vary
[BCF92]. Often it would be possible to fit nearly the same geometry with a highly
reduced number of independent parameters or with lower polynomial degrees. In
this case SVD (in combination with an appropriate polynomial base) will be the
preferred method of reducing the degrees of freedom of the initially chosen fit
model.



Chapter 6

Implementation

6.1 CM Specific Problems

6.1.1 Preliminaries

The use of FUNKE is not restricted to the field of coordinate metrology (CM)FUNKE not restricted
to CM only. It can be used for arbitrary problems, where the ’fixed parameters’ of a dou-

ble or a triple parametric function, dependent on one or two ’moving-parameters’,
have to be fitted in the least squares sense. Of course, due to the underlying con-
cept of treating the position/orientation parameters separately and in a general
manner, it becomes especially useful for geometrical fitting problems. As said in
the first chapter, such problems could arise in many fields dealing with geomet-
rical 2D/3D-spaces.

However, the main application will remain in the field of CM, as it was developedProbe radius
correction and
deflection
compensation are
CM-specific problems

regarding its special needs. Even so, the evaluation requirements of CM have
some similarities to other 3D measuring techniques, for example, to surveying,
but there are some special hardware problems appearing only in classical CM
using mechanical probes. The two most important are probe radius correction
and deflection compensation of the probe tip. In the next section we will show
how they can be taken care off with FUNKE.

6.1.2 Probe Radius Correction

6.1.2.1 Difficulties

Probe radius correction is trivial for standard elements. It can be easily performedTrivial for standard
elements after bestfit. Dealing with standard features, the surfaces, fitted by ignoring any

radius correction, are still of the same surface class as the original ones. The
probe radius correction is nothing but a correction of the dimension parameters
in these cases.

However, each element is corrected in its own, different way. For example, forNo general proceeding

87
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planes and cones, probe radius correction results in a correction of position; for
spheres and cylinders, probe radius correction results in a correction of the geom-
etry parameters (radius); for toroids, probe radius correction results in a partial
correction of the geometry parameters (small radius only). Because of this, the
definition of an universal procedure for probe radius correction becomes difficult.

For complex or sculptured surfaces, the probe radius correction becomes much Offset surface of a
sculptured surface is
not trivial

more difficult than for standard elements. In these cases we cannot perform the
probe radius correction after bestfit because the offset-surface of a non-standard
element is no longer a member of the same surface class.

The problem of correct probe radius correction is related to the same underlying Same problem as
exact bestfitmathematics as the problem of exact bestfit itself. Probe radius correction after

bestfit is restricted to elements which have an implicit distance function. On
the other hand, the approach (1.9) for an approximated distance function of a
sculptured surface, as proposed by [GPS80], [Goc82]:

d(x, y, z) ∼=
F (x, y, z)

‖ grad(F (x, y, z)) ‖

explained in section 1.2.3.1 would be useless for probe radius correction.

It gives an approximation dealing with small deviations, but it cannot deliver Approach for small
distances is useless for
probe radius
correction

satisfactory results for probe radius correction. Here we are dealing no longer
with small ’out-of-plane’ deviations where a linearization can be considered as a
good approach.

So we can state that based on (1.9) we can only perform an approximate bestfit Probe radius
correction is possible
for parametric
description

without any probe radius correction. In the following we will show how the exact
probe radius correction can be performed based on parametric description. We
simply have to modify formula (4.29) by an additional term.

6.1.2.2 Modified System of Equations

To describe probe radius correction we define the vector Different probe for
each measuring point

R := (r1 · e1, . . . , rn · en) , (6.1)

where ri shall be the probe radius used at the i-th measuring point and ei the i-th
direction vector with unit length, pointing from the probe center to the contact
point.

Now we can replace the measuring point giving the probe center x̂i by the real Replacing measuring
points by contact
points

contact point
(x̂i + ri · ei) .

Instead of the distance di between the i-th measuring point (center of probing Effective distances

sphere) and the i-th actual surface point

di =‖ x̂i −R(a)
(
x(i) + t

)
‖=‖ RT (a)x̂i −

(
x(i) + t

)
‖
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with x(i) defined by (5.22), we can write for the corrected distance d?
i between

the i-th contact point and the i-th actual surface point

d?
i =‖ RT (a)(x̂i + riei)−

(
x(i) + t

)
‖ . (6.2)

Geometrically it is evident (and with some calculations it can also be shownChoosing ei

algebraically) that we have to choose ei as

ei = −
∆x(i)

‖∆x(i) ‖
(6.3)

with

∆x(i) = RT (a)x̂i − (x(i) + t)

as defined in (5.26).

It can be shown then, that in doing so, we minimize instead of the originalModified objective
function Q?

2 objective function

Q2 =
n∑

i=1

d2
i

the modified objective function

Q?
2 =

n∑
i=1

d?2

i = Q2 +
n∑

i=1

r2
i −

n∑
i=1

2ri ‖∆x(i) ‖ .

Choosing ei like this, our previously developed formalism still remains true.Same formalism

With iteration completed, on the one hand, probe center, contact point andei approximated by
the inverse actual
surface normal

actual surface point are aligned; on the other hand, the vectors between the
finally calculated surface point and the measuring points (probe centers) are
orthogonal to the surface. So we can approximate ei also by the actual inverse
surface normal. This becomes more correct the more the iteration progresses.

Working with parametric representation, we can easily construct the inverse sur-Normal of a
parametric surface face normal −n for any surface point:

ei = −n(u, v,p) =
∂x′

∂v
(u, v,p)× ∂x′

∂u
(u, v,p)

‖ ∂x′

∂v
(u, v,p)× ∂x′

∂u
(u, v,p) ‖

. (6.4)

For surfaces not differing much from a plane, the normal vector is nearly constantGood approximation
for near-plane surfaces over the whole surface. So (6.4) seems a better choice than (6.3) because we have

a good correction vector right from the beginning. On the other hand, we can
always use (6.3) even if the actual normal vector disappears (e.g. polar singularity
on the sphere). However, after the iteration has converged both approaches are
correct, so both deliver the same (correct) result.

To integrate now the probe radius correction into the bestfit procedure we writeCorrected system of
equations
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instead of (4.29) [
∂X′

∂U
,

∂X′

∂p
, QT (a) · ∂X

∂a
,

∂T

∂t

]
·∆W (6.5)

≈ QT (a)X̂−X′(U,p)−T(t) + QT (a)R(U,p, a, t) .

Note: We use the original Jacobian dealing with a modified right hand side.

Thus we have a method of probe radius correction which is exact for all kinds of Universal probe radius
correctionsurfaces and is applicable always in the same way.

6.1.2.3 Modified Jacobian

In (6.5) we do not use the correct Jacobian that would result from including the Uncorrected Jacobian

probe radius correction. This has no effect on the final result, but the convergence
is slower this way. However, since the components of the normal vectors comprise
1st derivative terms, the necessary correcting terms would contain 2nd partial
derivatives with respect to the surface coordinates; hence they are negligible
except at points with extreme curvature.

In our algorithm these ’extreme’ points are fitted simultaneously with ’modest’ Good convergence
behaviorpoints and also simultaneously with all other parameters. So, in practice, fast

convergence is achieved even if there are some ’extreme’ points. We have observed
a stable behaviour not only in all practical examples but also in all simulated –
not completely unrealistic – theoretical examples.

In spite of this, with some additional considerations based on (6.3) we can take Calculating the
Jacobianinto account the influence of the probe radius correction on the Jacobian matrix.

We adjust it accordingly, accepting a slightly increased computational effort.

To this end we express the corrected distance vectors ∆x?
(i) given by Corrected distance as

a function of the
uncorrected

∆x?
(i) := RT (a)x̂i − (x(i) + t)︸ ︷︷ ︸

∆x(i)

+RT (a)riei (6.6)

(c.f. (6.2)) as a vectorial function of the uncorrected distance vectors ∆x(i)

defined in (5.26). The resulting Jacobian ∂(∆x?)
∂(∆x)

we can use to transform the

original Jacobian ∂X
∂W

into the modified Jacobian ∂X?

∂W
which takes into account

the probe radius correction, too.

With

ei = −
∆x(i)

‖∆x(i) ‖

we get

∆x?
(i) =

(
I − RT (a)ri

‖∆x(i) ‖

)
∆x(i) . (6.7)
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For the i-th Jacobian J(i) :=
∂(∆x?

(i)
)

∂(∆x(i))
we then geti-th Jacobian

J(i) =
RT (a)ri

‖∆x(i) ‖3
∆x(i)∆x(i)

T +

(
I − RT (a)ri

‖∆x(i) ‖

)
. (6.8)

This expression can be simplified to

J(i) = I +
ri

d3
i

RT (a)

−∆y(i)
2−∆z(i)

2 ∆x(i)∆y(i) ∆x(i)∆z(i)

∆x(i)∆y(i) −∆x(i)
2−∆z(i)

2 ∆y(i)∆z(i)

∆x(i)∆z(i) ∆y(i)∆z(i) −∆x(i)
2−∆y(i)

2

 . (6.9)

Thus the Jacobian matrix in (6.5) can be corrected easily by multiplying fromCorrection matrix

the left hand side with the additional Jacobian matrix:

∂(∆X?)

∂(∆X)
=

n⊕
i=1

J(i) .

By this the modification on the right hand side ∆X? := (∆x?
(1), . . . ,∆x?

(n)) is
also taken into account on the left hand side.

6.1.3 Compensation of Probe Tip Deflection

6.1.3.1 Difficulties

When performing any measurements in the µm-range, we must take into accountNecessity

the deflection of the probe tip. The same is true if we use extraordinarily long
shafts. This could occur if a workpiece has to be measured at poorly accessible
locations, e.g., at the bottom of a long bore.

To compensate for probe tip deflection we should know the actual surface normalNormal direction is
needed (direction of the probing force vector, see figure 6.1) in addition to the coordinates

of the measured point. Two basically different types of probing devices have to
be distinguished [Loe80]: The switching type issuing a single 3D coordinate upon
contact with the workpiece surface and the analogous type issuing a 3D value,
extrapolated (normally to zero-force) from continuously recorded 3D coordinates.
The normal direction is only delivered by the second type of sensors.

However, analogous sensors have also some drawbacks compared with switchingRestrictions

ones: They are expensive, relatively slow (if they are not in scanning mode), and
they are not suited for manually operated CMM’s. Furthermore, the direction of
the surface normal is only accurate to within 10 - 15 degrees due to the friction
effects.

For these reasons, some effort was taken in the past to search for alternate meth-Alternative methods

ods to detect the probing direction by hardware mechanisms. [AKK89] proposes
an electrically conductive sphere where the contact point is determined by an
electric resistance measurement over the spherical probe surface.
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A purely software-based concept of compensating for probe tip deflection is to Using nominal normal
directionsinsert the nominal instead of the actual surface normal. However, this approach

works only when dealing with a CNC-controlled measurement process where the
surface coordinates (u, v) of the contact points are known exactly enough. Eval-
uating the data obtained on a manually operated CMM or a scanning process
on a CNC-machine poses serious problems. In both cases, the nominal surface
coordinates are not known exactly enough.

As we have seen in the last section, we are able to compute the surface normal Computing actual
normal directions by
SW

directions in an easy way if we are using a parametric surface description. That
is why FUNKE can calculate the actual normal direction and thus compensate
for probe deflection more accurately than with the above mentioned conventional
methods. Because the normal directions are steadily improved in the course
of the iteration process, the final compensation is based on the surface normal
directions of the substitute feature in its bestfitted position/orientation (instead
of the nominal feature in its unfitted position/orientation). Furthermore it does
not rely on any additional and problematic probing device information.

6.1.3.2 Model of Compensation

We can compensate for the deflection of the probe tip if we assume the probe to Elliptical probe model

be an ellipsoid instead of a sphere (Figure 6.1). The ellipsoid parameters and its
orientation can be determined by calibration.

Suppose the orientation of this virtual ellipsoid is described by 3 angles from Virtual ellipsoid

which we construct the rotation matrix RE; let its geometry be described by the
3 half axes hx, hy and hz, from which we construct the matrix

E = diag(hx, hy, hz) .

Again, we admit different probes to allow for more generality. We describe the Description of
deflection
characteristics

deflection characteristics of the probe at the i-th measuring point by REi
and Ei.

Then the direction-dependent radius correction at the i-th point is

REi
· Ei · ei , (6.10)

where ei is the unit vector as defined in the last section, pointing from the probe
sphere center to the contact point.

Instead of an isotropic probe radius correction as discussed in the last section, we Introducing an
anisotropic probe
radius correction

can assume now an anisotropic probe radius correction. The only modification
of the algorithm for introducing probe tip deflection compensation is to replace
the vector R of (6.1) by

R? := (RE1 · E1 · e1, . . . , REn · En · en) . (6.11)

The iteration has to be performed by using this adjusted ’radius vector’ R?. By
such simple modification, we have introduced a software-based probe tip deflec-
tion compensation in our algorithm.
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F
F . sin(u)

u

u

R

F . cos(u)
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Dy
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x ( u ) = ( r + F / D x ) . c o s ( u )
y ( u ) = ( r + F / D y ) . s i n ( u )

mathematical probe
(ellipsoid)

Figure 6.1: Physical model of probe tip deflection

6.2 Reduced Number of Free Parameters

6.2.1 Symmetries

A lot of surfaces on industrial workpieces have rotational or translational symme-Free fit-parameters
have to be reduced by
the number of
symmetries

tries. This introduces redundancy in the general position/orientation description
as discussed in the previous sections. Symmetries reduce the number of free
position/orientation parameters for parameter fitting.

By the number of free parameters we can also calculate the minimum number ofEquation for the
minimum number of
measuring points

measuring points we need to reconstruct the object. This minimum number can
be important in CM-practice. We get

npoints ≥
g + ts− s

(ds − do)
, (6.12)

where g expresses the number of independent geometric parameters of a surface,
ts the number of space transformations (3D space: 3 rot.+3 tra.=6, 2D space: 1
rot.+2 tra.=3), s the number of all translational and rotational symmetries, ds

the space dimensions (3D space: 3, 2D space: 2) and do the object dimensions
(surface: 2, curve: 1).

We obtain the above useful equation by observing the condition:# of equations ≥ #
of unknowns  # of equations ≥ # of unknowns

ds · n ≥ do · n + g + ts − s


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when forming our system of equations for linear bestfit.

We already mentioned in the preceding sections that it is important to analyze all Finding out all
symmetriessymmetries of a given surface. Only by taking them into account can we prevent

singularities in the resulting system of equations. For example, we recognize
that we can rotate a sphere by x-, y- and z-rotations about its center point
and it still remains the same surface in the same position. So we have to take
into consideration 3 rotational symmetries whenever bestfitting a sphere by a
separated position/orientation description as it is part of our algorithm.

Up to now, we have described an algorithm that makes use of all degrees of Unmodified algorithm
fails for standard
surfaces

freedom of position/orientation. Even though this is correct in general for a
sculptured surface, it is particularly wrong for a standard surface; the algorithm
would fail in the form described above. Some complex surfaces have symmetries
too. The helical toroid, e.g., appearing as a technical surface in a ball screw drive,
has a combined rotation/translation symmetry. It remains the same surface if we
translate it and at the same time rotate it about its axis.

A rotation about or a translation along a symmetry axis is equivalent to the Symmetry operation
corresponds to an u,v
variation

variation of the surface coordinates u and v. Therefore the resulting system of
equations becomes singular.

For implementation we should distinguish the surface classes by their symmetries. Contradiction to
universalityThis is, however, in some contrast to the claim of the universal applicability of

the algorithm.

To overcome this problem, we introduce for each class of surface a binary ’sym- Symmetry vector s

metry vector’ s describing its symmetries:

s := (ρx, ρy, ρz, τx, τy, τz)

where each parameter ρi and τi assumes a value 0 or 1 (0 =symmetry, 1 =no
symmetry).

By means of this logical vector we can construct the following ’symmetry-matrix’ Symmetry matrix S

S (which is identical with the identity matrix I2n+g+6 in case there are no sym-
metries):

S :=


I2n+g O

O diag(ρx, ρy, ρz, τx, τy, τz)

 .

This matrix S can be interpreted as the Jacobian ∂W
∂W? of a special functional Special Jacobian

dependence W(W?) between two parameter sets: The parameter set W? is iden-
tical with the parameter set W except for certain parameters in W? which are
not variable any more.

Based on this interpretation we can correct the original, overdetermined system Correcting the original
systemof equations:

J(W) · S︸ ︷︷ ︸
J(W?)

·∆W? ≈∆X(W?) . (6.13)
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The changed Jacobian J(W?) = J(W)·S has some zero columns, hence arbitrary
values for the corresponding parameters are admitted.

Consider the special decomposition of S:Decomposition
S = S?S?T

S = S? · S?T

where S? is a binary matrix with the same number of rows as S, but the number
of columns is reduced by the number of zeros in s.

For example, ifExample of a
decomposition

ρz = 0 (rotational symmetry in z) ,

we write for S?

S? :=



I2n+g O

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

O 0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

This matrix S? delivers the correction of the original system of equations in anDeleting redundant
unknowns easy way which allows us to reduce memory requirement and computation time:

By multiplying the Jacobian from the right hand side with S? we delete the
corresponding columns; similarly, by multiplying the vector of unknowns from
the left hand side by the transposed matrix S?T , we delete the corresponding
parameter elements:

J(W) · S?︸ ︷︷ ︸
reduced matrix

· S ?T ·∆W?︸ ︷︷ ︸
reduced vector

≈ ∆X(W?) . (6.14)

This logical vector s we have to define in addition to the parametric descriptionSymmetry vector as
an additional
surface-specific
component

for the complete specification of any newly introduced surface. By this, we regain
the full universality of the proposed surface-independent bestfit.

For example, for the following common elements, we get the symmetry vectors:Symmetries of some
elements
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s line = (1, 1, 0, 1, 1, 0) nmin = 0+6−2
3−1

= 2

s circle = (1, 1, 0, 1, 1, 1) nmin = 1+6−1
3−1

= 3

s plane = (1, 1, 0, 0, 0, 1) nmin = 0+6−3
3−2

= 3

s sphere = (0, 0, 0, 1, 1, 1) nmin = 1+6−3
3−2

= 4

s cylinder = (1, 1, 0, 1, 1, 0) nmin = 1+6−2
3−2

= 5

s cone = (1, 1, 0, 1, 1, 1) nmin = 1+6−1
3−2

= 6

s torus = (1, 1, 0, 1, 1, 1) nmin = 2+6−1
3−2

= 7

s ellipsoid = (1, 1, 1, 1, 1, 1) nmin = 3+6−0
3−2

= 9

s screw = (1, 1, 1, 1, 1, 0) ? nmin = 1+6−1
3−2

= 6

s poly.surf. = (0, 0, 0, 0, 0, 0) ?? nmin = g+6−6
3−2

= g???

? : One rotational symmetry is combined with a translational symmetry
?? : Rotations and translation are implicitly included in polyn.coeff.(see (5.14))
???: # of independent geometry parameters of a polyn.surface: g ≤ 3st− 4

These examples are in accordance to the following standard parametric represen- Examples of SPR

tations (SPR) of these elements:

x′line(u, v,p) = (0 , 0 , u)

x′circle(u, v,p) = (p1 cos(u) , p1 sin(u) , 0)

x′plane(u, v,p) = (u , v , 0)

x′sphere(u, v,p) = (p1 cos(u) cos(v) , p1 sin(u) cos(v) , p1 sin(v))

x′cylinder(u, v,p) = (p1 cos(u) , p1 sin(u) , v)

x′cone(u, v,p) = (v cos(u) , v sin(u) , v cot(p1))

x′torus(u, v,p) = ((p1 + p2 cos(v)) cos(u) , (p1 + p2 cos(v)) sin(u) , p2 sin(v))

x′ellipsoid(u, v,p) = (p1 cos(u) cos(v) , p2 sin(u) cos(v) , p3 sin(v))

x′screw(u, v,p) = (v cos(u) , v sin(u) , p1u)

x′poly.(u, v,p) = (
∑s

k=0

∑t
l=0 pxkl

ukvl,
∑s

k=0

∑t
l=0 pykl

ukvl,
∑s

k=0

∑t
l=0 pzkl

ukvl)
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6.2.2 Constraints

6.2.2.1 ’Frozen’ Parameters

In coordinate metrology it is often necessary or useful to pre-assign fixed values toFixed nominal values

some parameters, normally the nominal values, varying the remaining parameters
only. Sometimes such an assignment accounts for the specified functionality of
the measured workpiece in a better way and sometimes it simply improves the
numerical conditions for a given bestfit problem.

For example, if we have to determine the position/direction of a cylinder, whichExample: Small
cylinder segment can be probed only in a small segment, it would be easier to do if its radius

were preset to the nominal radius. This way, large variations of the output data
(position/orientation) caused by a small spread of the input data (measuring
errors!) can be avoided.

In all these cases we have fitting problems subject to simple constraints. Based onSimple constraints

the knowledge of the preceding section, we can handle these kind of constraints
in the same way as the already treated symmetries.

All unknowns appearing in W can be held fixed individually by simply introduc-Constraint vector b

ing a corresponding (logical) vector c:

c := (υ1, ν1, . . . , υn, νn, π1, . . . , πg, ρx, ρy, ρz, τx, τy, τz)

with values 0 or 1 for each element.

This vector c defines the ’constraint matrix’ C :Constraint matrix C

C := diag(υ1, ν1, . . . , υn, νn, π1, . . . , πg, ρx, ρy, ρz, τx, τy, τz) .

Combining the symmetry matrix S with the constraint matrix C we get theFreezing matrix F

’freezing matrix’ F :
F := S · C . (6.15)

We call this matrix a ’freezing matrix’ because it allows us to ’freeze’ arbitraryFreezing degrees of
freedom degrees of freedom of the bestfitted surface class. In analogy to (6.13) we can

write
J(W) · F ·∆W? ≈∆X(W?) (6.16)

and also perform the decompositionDecomposition
F = F ?F ?T

F = F ? · F ?T .

This way we get the reduced system of equationsReduced system

J(W) · F ?︸ ︷︷ ︸
reduced matrix

· F ?T ·∆W?︸ ︷︷ ︸
reduced vector

≈ ∆X(W?) . (6.17)

Of course it would be very inefficient to implement (6.17) explicitly. Because S,Implementation by
Boolean operations
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C and F are binary matrices the matrix multiplication (6.15) can be replaced by
a logical AND between s and c:

f := ((s1 AND c1), . . . , (s2n+g+6 AND c2n+g+6)) .

Then the matrix F is given by

F = diag( s AND c ) .

This leads to the following general procedure: first construct the original matrix Deleting mechanism

of the system of equations. Scan through all columns, keeping or not keeping each
column depending on the corresponding value of the logical vector f : 1 means
keep and 0 means do not keep. With the solutions of the reduced linear system
of equations, change the free unknowns, while leaving the frozen ones (given by
f) unchanged.

Instead of deleting a column, of course, we can also leave it away from the be- Directly setting up the
reduced systemginning. On the one hand this is more efficient from the point of view of com-

putational efficiency, especially if we often make use of the possibility of freezing
degrees of freedom; on the other hand, it is more complicated to implement. As
we use freezing quite often (see also the next section), the latter option was chosen
for the actual implementation.

6.2.2.2 General Constraints

Here we try to generalize the procedure described in the last section (i.e., freezing Treating general
constraintsindividual parameters) to cope with general constraints. It can be applied to cases

where the constraints can be brought to a form in which a subset of parameters
can be expressed as a function of the remaining ones.

The method is based on the concept of eliminating as many unknowns as there are Eliminating unknowns

constraints. When dealing with implicit functions we normally use the Lagrangian
principal function to treat the constraints. This is the standard method for this
type of function. Parameter elimination is usually not recommended in these
cases [HH69]. On the other hand, there are some special reasons to use the
elimination method for our algorithm. First, the freezing method as described
above is a special case of the elimination method. So the procedure for dealing
with constraints can be implemented easily for general use. Second, in a lot of
practical cases, elimination comes in a natural way (see first example), and the
necessary corrections are quite easy to carry out.

Additionally we save CPU-time and memory, similarly to the freezing method Advantages and
drawbacksexplained above. Of course we should select the parameters to be eliminated

carefully. In linear systems we should do this in such a way that the matrix K to
be inverted (as described below) becomes as well-conditioned as possible.

A general constraint may be interpreted as a relation between some individual Expressing constraints

parameters extracted from the whole of all parameters to be optimized. Thus,
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each constraint can be expressed by a corresponding implicit function of the
parameter set W:

F1(W) = 0 : 1-th constraint
...

...
Fk(W) = 0 : k-th constraint

(6.18)

where the number of constraints k is sensibly lower than the number of optimiza-
tion parameters l (k < l).

We try to express a subset of k parameters W1, . . . Wk as a function of the re-Explicit form

maining l − k parameters:

W1 = W1(Wk+1, . . . ,Wl)
...

...
Wk = Wk(Wk+1, . . . ,Wl)

. (6.19)

If we succeed in doing this we can perform an optimization subject to the given
constraints simply by eliminating these k unknowns. In practice, this is often the
case; e.g. with only one constraint this is equivalent to solving the corresponding
relation F (W) = 0 with respect to a single unknown.

With the k − l-fold identityCompleting the
functional dependency

Wk+1 = Wk+1(Wk+1, . . . ,Wl)
... =

...
Wl = Wl(Wk+1, . . . ,Wl)

we complete (6.19) to a functional dependence W(W?) on the original parameter
set W from a sub-parameter-set

W? := (Wk+1, . . . ,Wl) .

Thus, by computing the Jacobian Jconstr of the functional dependencies (6.19) weJacobian of
constraints can write the whole Jacobian as

∂W

∂W?
=

[
Jconstr

Il−k

]
. (6.20)

This matrix can be used to modify (4.22)Modifying the
unconstrained
problem

J(W(W?)) · ∂W

∂W?
(W?)︸ ︷︷ ︸

correction term

·∆W? ≈ X̂−X(W(W?)) . (6.21)

In the solution procedure an iteration step delivers the correctionsRecalculation by each
iteration step (∆Wk+1, . . . , ∆Wl) = ∆W? directly while the corrections (∆W1, . . . , ∆Wk) have

to be calculated from (6.19). To form then the system of equations for the fol-
lowing iteration step, the complete parameter set (W1, . . . ,Wl) = W has to be
used again.
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With some small modifications we can solve a large number of constrained bestfit Generalizing also
constrained problemsproblems by using the same algorithm but implementing additionally

W(W?) and
∂W

∂W?
.

We especially discuss the case (6.19) because in practice mostly only a few un- Normally a few
elements involved into
constraints

knowns appear in the constraints. These are the parameters representing dimen-
sion, position/orientation p, a and t. The (much larger) vector U, representing all
surface coordinates, is not of direct interest for the solution of a bestfit problem,
so it is normally not involved in the constraints.

6.2.2.3 Linear constraints

Consider the important special case of linear constraints Expressing linear
constraints

l∑
i=1

b1i ·Wi = c1 , . . . ,
l∑

i=1

bki ·Wi = ck (6.22)

or

B ·W = c .

If we assume that the rank of the matrix B is full (otherwise there are some Linear constraints can
always be brought to
form (6.19)

constraints, which are equivalent), we can always bring the constraints into form
(6.19).

We write Decomposition of the
matrix equation

[
B
]
·W =

[
K L

]
·W = c , (6.23)

where K and L are defined as

K :=


b11 · · · b1k
...

...
...

bk1 · · · bkk

 and L :=


b1(k+1) · · · b1l

...
...

...
bk(k+1) · · · bkl

 .

Because B has full rank, there exists a permutation matrix P , which permutes Permuting the
unknowns to make K
nonsingular

the unknowns W (together with the columns of B)

BP︸︷︷︸
B′

·P TW︸ ︷︷ ︸
W′

= c

such that K (as a sub-matrix of B′) is nonsingular. In the following we assume
that we have already permuted (6.22) in the sense above, i.e., B := B′ and
W := W′.
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So we can multiply (6.23) from the left hand side by K−1
Resolving to W? [

Ik K−1 · L
]
·W = K−1 · c (6.24)

and we get
(W1, . . . ,Wk)

T = K−1 · c−K−1 · L ·W? . (6.25)

Completing the system of equations as shown in the last section yields for theFunctional
dependency W(W?) desired functional dependence W(W?)

W(W?) =

[
−K−1 · L

I(l−k)

]
︸ ︷︷ ︸

Jacobian ∂W
∂W?

·W? +


K−1 · c

0
...
0

 . (6.26)

6.2.2.4 Examples

For example take an ellipsoid which shall be fitted in such a way that the lengthEllipsoid with
constant ellipticity ratio of its principal axes remains constant. We express this with the help of the

two constants k1 and k2:

a : b = k1 and b : c = k2 .

So, we get the linear system

[
1 0 −k1

0 −k2 1

]
·

 a
c
b

 =

 0
0
0

 .

With

K−1 =

[
1 0
0 − 1

k2

]

we get [
−K−1 · L

1

]
=

 k1
1
k2

1

 .

Thus, with the relation

a(b) = k1 · b and c(b) =
1

k2

· b ,

together with the terms for correcting the Jacobian

∂a

∂b
= k1 and

∂c

∂b
=

1

k2

,

we can solve this problem. In the special case of a sphere we have k1 = k2 = 1.
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As another practical example, consider a cylinder which has to be fitted touching Cylinder touching 2
planestwo given planes, as it might appear in a fillet. The direction of the cylinder axis is

given by the cross product of the two plane normal vectors. To keep the example
as simple as possible, we use a coordinate system with the preset cylinder-axis as
the z-axis. So we have the planes given by

nx
(1) · x + ny

(1) · y + d(1) = 0

nx
(2) · x + ny

(2) · y + d(2) = 0 ,

where (n(1)
x , n(1)

y , 0) and (n(2)
x , n(2)

y , 0) are the normal vectors of the two planes.

The translation vector t = (tx, ty) and the cylinder radius r are related by the Constraints

two constraints:
nx

(1) · tx + ny
(1) · ty + d(1) = r

nx
(2) · tx + ny

(2) · ty + d(2) = r .

According to (6.23) we write Noting in the
standardized manner[

−1 nx
(1) ny

(1)

−1 nx
(2) ny

(2)

]
·

 r
tx
ty

 =

[
−d(1)

−d(2)

]
. (6.27)

Thus, we get for K−1

K−1 =

 n
(2)
x

n
(1)
x −n

(2)
x

− n
(1)
x

n
(1)
x −n

(2)
x

1

n
(1)
x −n

(2)
x

− 1

n
(1)
x −n

(2)
x



and further  −K−1 · L

1

 =
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x n
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1


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0
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
d1n

(2)
x −d2n

(1)
x

n
(2)
x −n

(1)
x

d1−d2

n
(2)
x −n

(1)
x

0

 .

With (the reduced)

W =

 r
tx
ty

 and W? =
(

ty
)
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we get for the functional dependencyFunctional
dependencies

W(W?) =

 r(ty)
tx(ty)
ty(ty)

 =


n
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x n

(2)
y −n
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(1)
x −n

(2)
x

1

 · ty +
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d1n

(2)
x −d2n

(1)
x

n
(2)
x −n

(1)
x
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n
(2)
x −n

(1)
x

0

 , (6.28)

and for the Jacobian

∂W

∂W?
=


∂r
∂ty
∂tx
∂ty
∂ty
∂ty

 =


n

(1)
x n

(2)
y −n

(2)
x n

(1)
y

n
(1)
x −n

(2)
x

n
(2)
y −n

(1)
y

n
(1)
x −n

(2)
x

1

 . (6.29)

So we supplement the system of equations with (6.29) to obtain the correction of
ty and then we use (6.28) to calculate the corrections of r and tx.

6.3 Fitting Compound Features

6.3.1 General Procedure

Functional requirements of a workpiece or the conditions under which it wasRelevancy

manufactured often lead to a special type of constrained bestfit problems. This
is the problem of fitting a group of surfaces as a whole. In commercially available
CM-software there exist only some few special solutions for this type of problems
(see e.g. [For92],[RMM94]). By solving it, however, we also get the key to a
lot of practical problems which need ’workarounds’ or which cannot be solved
satisfactorily today.

Instead of ’static constraints’ (where we have to observe a position/orientation’Dynamic constraints’

relationship to other surfaces, which stay fixed during the bestfit), ’dynamic’
constraints have to be observed here. With ’dynamic constraints’, we express
that the relative position/orientation between two or more surfaces has to be
observed. These surfaces do not stay fixed during the bestfit, but are all subject
to be fitted.

This problems arises especially when dealing with sculptured surfaces. The math-Sculptured surfaces
are normally
composed surfaces

ematical description of a sculptured surface is composed of a number of separate
mathematical functions (patches) each of which describes only a small part of
the whole surface [KS95]. For example, the VDA-FS-standard specifies such a
description [VDA82]. The surface is subdivided into individual parts for math-
ematical reasons only, not for geometrical ones. This means that a coherent
surface normally should be constructed without any gaps and edges; in CAD-
terms it should have C0- and C1-continuity. Fitting this multitude of ’patches’
as a whole would keep these characteristics intact while an individual fit of each
one would visibly destroy them.
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If implicit functions are used, this problem turns out to be very hard to solve. It Easy to solve with
separated geometry
description

is an important advantage to use parametric description and to have geometry
separated completely from position/orientation as realized in FUNKE.

It is also possible to assign to each nominal point a different surface-function. An Assigning each
nominal point a
surface function

appropriate implementation has to manage this properly: The x, y, z-coordinates
and the derivatives

x(i) , xu(i)
, xv(i)

, xp1(i)
. . .xpg(i)

(6.30)

of the i-th surface point with surface coordinates (ui, vi) have to be calculated by
accessing the surface function assigned to this nominal point.

When introducing the formalism for the automated generation of the Jacobian in Uniform function up
to nowsection 4.5.2, we assumed that the values (6.30) are the function-values and the

partial derivatives, respectively, of the same function

x′(u, v,p) .

Now we can drop this assumption. When dealing with a group of N surfaces we Split function

can define a corresponding set of N surface describing functions

x′
(A)

(u, v,p), . . . ,x′
(N)

(u, v,p) .

Furthermore we need a relation Point surface relation

i 7→ K(i) ; (1 ≤ i ≤ n) and (A ≤ K ≤ N)

assigning each point i of the compound surface to exactly one surface K such we
can evaluate

x(i) = x′
(K(i))

(ui, vi,p) , xu(i)
=

∂x′(K(i))

∂u
(ui, vi,p) etc.

Normally it is evident to which surface an individual point belongs. However, if Monitoring border
pointsthe point is located very close to the boundary between two surfaces which are

not visibly separated by an edge (C1-continuity), the point should be monitored
during the iteration process. If the point runs out of the boundaries of the actually
assigned surface, it has to be re-assigned to another surface.

Furthermore we have to take into consideration that not every individual function Geometry parameters
of the combined
feature

x′(K) depends on the whole vector p, i.e., on all geometry parameters appearing
in the bestfit. Let p(K) be the geometry parameters actually appearing in the
individual function x′(K). Then we can define the set of all geometry parameters
p(A) . . .p(N) as the geometry parameter vector p = (p1, . . . , pg) of the combined
feature. By an appropriate data structure we can handle these correlations ac-
cordingly, as shown in the next section.
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6.3.2 Data Structure

6.3.2.1 Object Oriented Approach

With the help of a function-address pointer we can access the data of a certainFunction
address-pointer surface point in order to calculate its coordinates and derivatives.

In an object oriented language this could be realized in a more elegant way byVirtual function

a ’virtual function’, defined on a general surface class which can be ’overwritten’
individually by the surface function of a sub-class like ’sphere’, ’plane’, etc.

Because only the geometry describing function would be class specific, we haveMost methods can be
inherited from a
general surface class

a lot of ’methods’ in the superior, general surface class which can be ’inherited’
by all sub-classes derived from it. In addition to the general bestfit procedure
described here, this could be, e.g., graphical representation, input/output, space
transformations, etc.

If we are dealing with N surfaces of the same type (e.g., planes), but in differ-N instances of the
same surface class ent positions/orientations, we can start from the same original surface function,

e.g., x′(u, v) =

 u
v
0

, and construct the N surface functions by attributing

appropriate values to their position/orientation offsets:

x′(A)(u, v,p) = R(a(A)) · (x′(u, v,p) + t(A))

...

x′(N)(u, v,p) = R(a(N)) · (x′(u, v,p) + t(N)) .

In an object oriented language, we would implement N ’instances’ of the same
class in this case.

It should be noted that the position/orientation offsetsDifference between
a(K), t(K) and a, t

a(A), t(A), . . . , a(N), t(N)

which here define the relative (known) position/orientations of the N surfaces
between each other are not to be confused with the position/orientation param-
eters

a and t

used previously as variables in the bestfit procedure, there defining the bestfitted
(unknown) position/orientation of the surface

x(K)(u, v,p, a, t) = R(a) · (x′(K)
(u, v,p) + t) .

With these definitions, we get a suitable tool to fit two or more features si-Mechanism for
compound fit



106 CHAPTER 6. IMPLEMENTATION

multaneously while keeping their relative position/orientation unchanged: The
parameters for the unknown position/orientation

a / t︸ ︷︷ ︸
globally used

are not stored for each surface individually, but rather an address pointer is
stored for each individual surface which can point to an arbitrary set of position/
orientation parameters. This way it is possible to let different surfaces have the
same physical position/orientation by simply assigning the address of a common
parameter array to their individual position/orientation pointers.

By this mechanism we can select those surfaces which we want to bestfit together Great number of
possibilities(with common pos./orient. parameters a, t) and those which we want to bestfit

separately (with different pos./orient. parameters a, t). Furthermore, we can
determine surfaces which inherit automatically the position/orientation of other
surfaces, etc. However, the only data which are always stored individually for
each surface are the position/orientation offsets:

a(K) / t(K)︸ ︷︷ ︸
individually used

.

6.3.2.2 Recursive Structure

In the actual implementation this is realized in combination with a hierarchical, Hierarchical, recursive
data-structurerecursive data-structure. It allows us to combine an arbitrary group of surfaces

to a new upper element which includes all of the specified surfaces. Because
this element has the same physical position/orientation as its sub-elements, by
default we let their position/orientation pointers point to the same parameter set
a, t. This allows us to fit each surface individually or to fit an arbitrary group of
surfaces as a whole (compound feature fit).

Creating new elements by combining existing elements would cause redundancies Physically and
logically duplicated
data

if all data were duplicated whenever a new element were generated. The measur-
ing points, for example, logically belong to the upper element as well as to every
sub-element, but physically they exist only once. Consequently we also have to
store them only once. By reserving an address-pointer instead of a complete
data array for each individual surface, we can logically connect them to different
surfaces in a surface hierarchy without duplicating them physically, and keeping
them up-to-date with every change.

This is realizable in every modern computer language, however, in C or C++, C/C++ treat pointers
and arrays
equivalently

which treat pointers and arrays in a nearly equivalent way, this can be imple-
mented quite elegantly.
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6.3.2.3 Example Data Structure

As an example for the above concepts consider a workpiece consisting of a squareSample workpiece

block with a step bore inside (see figure 6.2). We assume that either the relative
positions/orientations between the different surfaces are sufficiently accurate, due
to the underlying manufacturing process, (for example we know, that the work-
piece was manufactured in a single clamping and thus the machine coordinate
system does not have to be re-determined), or that they can be assumed to be
sufficiently accurate, due to the desired functionality of the workpiece. On the
other hand, we are interested in 5 geometry (’dimension’) parameters on the work-
piece, either because we assume them to differ from their nominal values, due to
the underlying manufacturing process, or because they are especially important
for the desired functionality of the workpiece. These generalized ’dimensions’ are
the height a, width b and depth c of the square block, together with the two
radii R, r of the step bore. To determine these ’dimensions’ correctly, we have to
bestfit position/orientation of the workpiece simultaneously with bestfitting its
’dimension’ parameters. (In the same way we would also fit a standard feature.)

With standard CM-software we can only evaluate each surface individually byNot possible to
evaluate with
standard SW

taking into account its respective minimum number of measuring points (3 or 5)
but we cannot fit the compound feature as a whole.

The whole workpiece has no symmetries (even though the individual surfaces haveMinimum number of
measuring points of
the compound feature
is 11

ones); Therefore we have to determine all the 6 position/orientation parameters
a, t in addition to the 5 dimension parameters. Thus the minimum number of
measuring points for the compound feature is 11.

Normally we would take 3 to 5 times the minimum number of measuring points.3×−5× minimum
number is
recommended

If we assume the form deviations to be random, this will improve the result by
about a factor of 2 compared with the minimum number of measuring points
(∼
√

number). Additionally we get some information about the form deviation
of the whole workpiece by taking this highly recommended number of measuring
points (here, e.g., 50).

A small number of measuring points (near the minimum number) we shouldSmall form deviation

take only then, if we are sure that the form deviation is small (in our numerical
example < 0.96 >) and has absolutely no systematic behaviour. Any number
of measuring points substantially larger than the minimum conveys information
about the magnitude of the form deviation.

Much more important, however, is a well-chosen distribution of the measuringWell-chosen
distribution points, even if a large number of them is taken. This particularly concerns com-

pound features like in the present example. Otherwise we would obtain uncertain
values for the dimension parameters.

In our example we know the behaviour of the form deviation (see above). Due toLimitation to 13
measuring points clearness while explaining graphically the underlying data structure, and also due

to the easy reconstruction of the given numerical example in the following section,
this is because we limit the number of measuring points in this example to 13 for
determining the selected 11 parameters of the considered compound feature. As
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shown in figure 6.2 it will be important to choose the measuring points on the
workpiece surfaces in an appropriate way.

We propose the following decomposition of the workpiece: The step bore is one Suggestive
decompositionsubpart, the square block another. For their part, they split up into two cylinders

(step bore) and six planes (square block). Now we have to map this decomposition
to the implemented data-structure. For any given measuring task the optimum
decomposition scheme will be chosen, adapted to the actual problem.

In the FUNKE data representation all of the individual elements have the same Same structure

structure (named ’element-type’), irrespective of whether they represent cylin-
ders, planes, offset-planes or even combined objects. The actual object, repre-
sented by one of the elements A . . . K, is referenced by an object pointer in the
’element’-structure (upper left hand corner of the elements A . . . K in figure 6.3)
which points to the object specific data (essentially surface function and surface
symmetries).

This has the advantage of allowing us to treat all elements the same way. It Meets object oriented
philosophyagrees with the object oriented philosophy to integrate as many similarities as

possible in a common superior class (actually this class would be represented by
the class of all parametric surfaces in 3D-space x(u, v,p)) while the individual
subclasses (actually the class of cylinders, of planes, etc.) are intended to differ
as slightly as possible from the other classes. This allows it to ’inherit’ as much
as possible and to ’overwrite’ as little as possible.

The ’elements’ themselves can be linked arbitrarily in a hierarchical structure Combined objects are
equivalent to basic
objects

of arbitrary depth as illustrated by the example. So we can apply in FUNKE
the same methods to combined objects (step bore, square block) as we normally
apply to basic objects (cylinder, plane, offset-plane). This makes it quite flexible.
The flexibility is increased by the fact that we can also freeze or not freeze every
bestfit parameter individually, irrespective of whether it belongs to a basic or to
a combined object.

Since we can treat all elements the same way, each element should appear to the Each element should
be completesystem to be complete, having its own set of measuring points (with all related

data like surface coordinates, normal vectors and probe characteristics, etc.), its
own set of dimension parameters and its own position/orientation.

The position/orientation of an element can be split up into a common position/ Relative/common
position/orientationorientation a, t (which can be viewed as the position/orientation of the whole

workpiece), and the individual, relative position/orientation a(K),t(K) of the ac-
tual element X.

The relative position/orientation a(K),t(K) is thus stored individually for each Referenced position/
orientationelement (not drawn in figure 6.3) while the common position/orientation is ref-

erenced by an address pointer to the common parameters a, t (Upper right hand
corner of the elements A . . . K in figure 6.3). This subdivision into an individual
(relative) and a common position/orientation is implied by the fact that the posi-
tion/orientation of each individual surface changes by the same amount as that of
the workpiece as a whole (or an arbitrary subpart of it) changes by a translation
or a rotation.
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This gives us the flexibility to fit an individual surface, a group of surfaces orFlexibility to
determine the
workpiece coordinate
system

the workpiece as a whole. If we want to take the position/orientation of an
individual surface (element A . . . H) or a combined element (element I, J, K) as
a reference, we fit the corresponding element first and afterwards we freeze the
common position/orientation a, t while bestfitting the following elements. Thus
we can determine the workpiece coordinate system by an arbitrary combination
of surfaces and not only in the classical way.

The offset-rotations and translations a(A), t(A) . . . a(K), t(K) are not changed byUpdating a(K), t(K)

the bestfit. Normally these parameters represent the nominal, pos./orient. of
the elements relative to each other independent of the actually chosen workpiece
coordinate system. In our example, the different instances C, E and G of the
object ’plane’ differ only by their offset rotations. The plane C has no offset
rotation while the plane E has the offset rotation (−π

2
, 0, 0) and the plane G

(0, π
2
, 0). Analogously we can prescribe the values of the offset-rotations of the

elements D, F and H. Depending on the intended goal of the measurement we
can keep these nominal values or overwrite them by the actually determined ones.
This adds again to flexibility.

Besides position/orientation we need a set of dimension parameters and a set ofComplete,
independent elements measuring points (and correlated data) to make an element appear complete to

the system such that it can be treated independently. There is a problem which
appears while completing logical elements (as represented by I, J and K) to inde-
pendent elements, exactly treatable like the physical elements A, B, C,D, E, F, G
and H: Data would be duplicated which exist physically only once.

To solve this problem, we choose the data structure shown in figure 6.3: TheContiguous storage of
measuring points and
dimension parameters

measuring points and the dimension parameters of all sub-elements are stored
contiguously without any memory gaps between. This allows us to define an
address pointer for the dimension parameter set (lower left hand corner of the
elements A . . . K in the figure 6.3) as well as one for the set of measuring points
(lower right hand corner of these elements). This can be done for each element
irrespective of whether it represents a basic object or a combined object that
exists only as a logical entity.

According to this concept, any data that physically exist only once can be multi-Physical copy can be
inhibited referenced in a logical way without physical duplication. From database theory we

know that the reason for not copying physically is not only the waste of memory or
CPU-time, but mainly the problem of keeping coherence in the database. Imagine
that each time we are updating a couple of measuring points, e.g., by performing a
measurement, we would have to copy their values to all logical elements referring
to some of these measuring points. With the data-structure chosen above this is
absolutely unnecessary.

Of course the number of dimension parameters and measuring points also has toReferencing to the
example be defined accordingly. In the example shown we recognize that the element K

(workpiece) has 5 geometry parameters (R, r, a, b and c) and 13 measuring points;
the element I (step-bore) has 2 geometry parameters (R and r) and 3 measuring
points and the element J (square block) has 3 geometry parameters (a, b and c)
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and 10 measuring points. Furthermore, we recognize that the elements A, B,
D, F and H (see following paragraph) have 1 geometry (dimension) parameter
each and the elements A, D and E have 1 measuring point while the elements
B, C, F,G and H have 2 measuring points each.

To bestfit a combined object of type ’square block’ (like that represented by Fitting a square block

element J), not only observing its position/orientation a, t, but also its geometry
a, b, c, we have to reference its geometry parameters a, b, c additionally on the
individual planes C, D, E, F , G, H which represent the square block. But planes
normally have no geometry parameters. Therefore we have to use the following
procedure:

We introduce an additional object ’offset-plane’ (elements D, F and H) which Introducing
’offset-planes’has a geometry parameter p1 representing the offset in z-direction instead of

the translation parameter tz. Because the tz-parameter is omitted we have to
introduce an additional symmetry (in z-direction) to avoid redundancy. By means
of this construction we can fit the square block while observing its height, width
and depth a, b, c.

This procedure is necessary because some (i.e., t(D)
z , t(F )

z , t(H)
z ) of the relative pos./ Reason for

introducing offset
planes

orient. parameters a(K), t(K) which are stored individually for each surface (see
above) and thus are not subject to the general bestfit procedure, transform now
to (variable) dimension parameters (a, b, c) of the compound feature.

Note: If we determined (t(D)
z , t(F )

z , t(H)
z ) by fitting these three planes individually, Compound fit

compared to
individual fit

updating each time t(D)
z , t(F )

z and t(H)
z respectively by the actually fitted (general)

tz, this would correspond to an other solution belonging to an other measurement
problem.

Evidently, now we can generalize the above procedure to a commonly applicable Generalized concept

implementation concept:

1. Check the dimension parameters of the compound feature: Which ones are
real dimension parameters of the individual surfaces? Which ones are hid-
den (relative) pos./orient. parameters? If there are ’dimension’ parameters
of the second type, we eventually need new objects.

2. Create as few new objects as necessary. Is it possible to reuse the same ob-
ject several times by creating different instances (differing by their a(K), t(K))
?

3. In the newly introduced objects define these pos./ orient. parameters (of
step 1) as additional ’dimension’ parameters.

4. Introduce an additional rotation/translation symmetry to each pos./orient.
parameter transformed to such a ’dimension’ parameter (this inhibits re-
dundancies).
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6.3.2.4 Numerical Example

The same compound feature we used to explain the concept of the underlying data Same compound
featurestructure is used now as a numerical example. It shows the additional possibilities

we have with the proposed method compared with classical methods.

In order for the computation to be reproduced, we give the data of the measuringMeasuring points

points with same number and distribution as in the example above (see figure
6.2).

The first table shows a pointwise bestfit followed by a search for the footpointsFirst table

(surface points with nearest distances to the measuring points). We obtain the

averaged form deviation

√∑n

i=1
d2

i

n−1
= 16161µm. The pointwise fit as well as the

footpoint search we can simulate with FUNKE by freezing the appropriate pa-
rameters: The surface coordinates (u1, v1, . . . , un, vn) for the pointwise fit, and
the position/orientation parameters a and t for the footpoint search. Because
this method can only fit the nominal feature, the dimension parameters p are
frozen, too.

We can now alternate the pointwise fit and the footpoint search as explained inSecond table

section 4.3.1. We have to repeat these already iterative procedures 3219 times
until their results converge to the value 44.082939µm. This is shown in the second
table.

We can check the result by using FUNKE. Because we have fitted the nominalThird table

feature we must freeze the dimension parameters p at their nominal values in
order to correctly compare the results. With 7 iteration steps we get the same
value 44.082939µm as before. This is shown in the third table.

The main advantage of FUNKE is that we can also fit the dimension parametersForth table

together with position/orientation. By doing so we reduce the average form
deviation from 44.1µm to 0.96µm. It takes 8 iterations for the algorithm to
converge to the exact value of 0.964670µm. This is shown in the forth table. The
dimension parameters are slightly corrected there. An interesting effect is that
one fitted radius changes its sign. This is because the parametric representation of
the cylinder mathematically allows both results (neg. and pos.) while, of course,
only the positive one makes sense physically. We have to take this into account
for a further use of the results. Mathematically there exist two minima (see also
section 7.2), however, this is no problem if we start closer to the desired one. This
is absolutely realistic in CM-practice: Normally we also have approximated values
for the surface coordinates (u, v) which were chosen here arbitrarily distributed
(see section 3.3).

At last we demonstrate that we have good convergence with FUNKE, using aFifth table

poor approximation also for the dimension parameters p. FUNKE needs 9 steps
to converge to the correct value 0.964670µm, starting from the given (absolutely
wrong) values of all parameters. This is shown in the fifth table.
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Table 6 :  (X,Y,Z)-coordinates of the measuring points
-----------------------------------------------------------------------
coordinate                X           Y           Z            element
-----------------------------------------------------------------------
measuring point  1      31.6266   -118.2398     25.7440           A
-----------------------------------------------------------------------
measuring point  2      -6.2994     40.9176     18.6509           B
measuring point  3      11.0747     77.4910    -58.1322           B
-----------------------------------------------------------------------
measuring point  4     129.4105   -289.6457   -211.3621           C
measuring point  5     -87.6900    338.9653     38.4063           C
-----------------------------------------------------------------------
measuring point  6      -9.9867    -42.1593    100.6373           D
-----------------------------------------------------------------------
measuring point  7     138.3013   -369.7778   -102.1767           E
-----------------------------------------------------------------------
measuring point  8      43.1076    404.7678    172.0516           F
measuring point  9    -272.9729    318.6363     53.5095           F
-----------------------------------------------------------------------
measuring point 10     -41.6399   -361.2241   -184.9495           G
measuring point 11    -289.7178    287.9307     -1.2912           G
-----------------------------------------------------------------------
measuring point 12     316.9116   -271.4253    -27.8910           H
measuring point 13      73.3131    354.0138    162.5525           H
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Chapter 7

Verification

7.1 General Remarks

The verification of an algorithm is always an important step. In metrology itSignificance

is crucial [Lot83], [Dri89], [Kna93]. Results of different algorithms should be
comparable, i.e., they have not only to be somehow reasonable, but they have to
be exact in a precisely defined way [DIN86], [Bri89]. Metrology often appears in
connection with quality control. This crucial responsibility for product quality
additionally increases its significance.

Contrary to this, the algorithms for sculptured and complex surfaces availableState-of-the-art
sculptured surface fit today are usually not capable of delivering the exact least squares solutions. So

we can test them only empirically and check if their results are reasonable and
useful in practice.

When dealing with standard surfaces as well as with sculptured or complex sur-Comparison is always
possible faces, however, we can compare two algorithms in a very objective way (even if

they only approximate the bestfit).

As a prerequisite it has to be decided by which norm (e.g., Gauss or Chebychev)’Quality rate’ of an
algorithm the quality of the results of the compared algorithms has to be measured. As the

measure for the quality of the results, we take the value of the objective function
derived from the selected bestfit criterion. Of course we have to calculate this
value based on the exact distance function of the bestfitted surface. To be sure,
we should never rely on the calculated distances and even less on the distance
function used by the algorithm itself. The algorithm under consideration might
use an approximated distance function for simplicity or for the lack of an explicit
one.

When dealing with standard elements where correct distance functions exist, itVectorial description
of standard elements is useful to define them as a function of the coordinates (x̂, ŷ, ẑ) of an arbitrary

measuring point x̂ together with the output obtained by the algorithm to be
tested. These output parameters are the dimensions p and position/orientation a
and t. For standard elements, position/orientation are mostly given by a position

121
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and a direction vector [Wir93]. Because all standard elements have at least one
rotational symmetry it is sufficient to consider one direction vector only.

In the following we use a normalized direction vector n. The position vector r Correlation between
r,n and t,adefines directly the three possible degrees of freedom of translation tx, ty, tz, while

the direction vector n includes indirectly the remaining two rotational degrees of
freedom a and b:

n =

 − sin(b)
sin(a) cos(b)
cos(a) cos(b)

 . (7.1)

Thus the preferred form of a distance function is: Distance as a function
of x̂,p, r,n

d(x̂, r,n,p) . (7.2)

In this function we insert the parameters r,n and p delivered as a solution of the Evaluating value of
objective functionalgorithm to be tested together with a measuring point x̂. This way we obtain

directly the distance between the measuring point and the surface as calculated
by this algorithm. Doing this n times, for all given measuring points, we can
calculate the actual value of the selected objective function (e.g. Gauss) as a
function of the output parameters of the algorithm to be tested:

Q2(r,n,p) =
n∑

i=1

d2(x̂i, r,n,p) . (7.3)

7.2 Distance Calculation for Standard Surfaces

In the following we derive a method for computing the distance function of any Method to compute
the distance function
of a standard element

(rotation symmetric) standard element in form (7.2):

Such a distance function can be used for testing and comparing arbitrary bestfit Serves for both:
bestfit implementation
and testing

implementations (like FUNKE or also conventional solutions).

The basic idea is to express the distance function in a well-chosen coordinate Algorithm: Parameter
and coordinate
transformation

system where it is easy to define. Afterwards a coordinate transformation is
performed, expressed only by means of the position-vector r and the direction-
vector n. Applying this procedure, we get, e.g., the well known ’Hessian normal
form’ for a plane.

1. Describe the distance to the desired surface in a principal axes system of
cylinder coordinates (ρ, z). By this we obtain rather simple distance func-
tions:

Examples:
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wd=ρz
x′=(x′,y′,z′)=(ρ,z)

ρ

6

-

Figure 7.1. Straight line (coincident with the z-axis):

implicit surface function: ρ = 0
distance function: d(ρ, z) = ρ

w
d=z

z

ρ

x′=(x′,y′,z′)=(ρ,z)

6

-

Figure 7.2. Plane (normal to the z-axis):

implicit surface function: z = 0
distance function: d(ρ, z) = z
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w
d=ρ−R

z

ρ

x′=(x′,y′,z′)=(ρ,z)

6

-

Figure 7.3. Cylinder (axis coincident with the z-axis) with radius R:

implicit surface function: ρ = R
distance function: d(ρ, z) = ρ−R

w
d=
√

ρ2+z2−R

z

ρ

x′=(x′,y′,z′)=(ρ,z)

&%
'$

�
�

�
�

�

6

-

Figure 7.4. Sphere (center at the origin) with radius R:

implicit surface function: ρ2 + z2 = R2

distance function: d(ρ, z) =
√

ρ2 + z2 −R
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ρ−tan(α)·z
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α

tan(α)·z

z

ρ

d=(ρ−tan(α)·z)·sin(α)
α x′=(x′,y′,z′)=(ρ,z)�

-

6

Figure 7.5. Cone (axis coincident with the z-axis) with angle α:

implicit surface function: ρ
z

= tan(α)
distance function: d(ρ, z) = (ρ− tan(α)z) · sin(α)

w
d=

√
z2 + (ρ−R)2−r

z

ρ

x′=(x′,y′,z′)=(ρ,z)

&%
'$
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'$
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�

�
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ρ−R

z

J
J] Rr

�

6

-

Figure 7.6. Toroid (normal to the z-axis) with large/small radius R/r:

implicit surface function: (ρ−R)2 + z2 = r2

distance function: d(ρ, z) =
√

z2 + (ρ−R)2 − r
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2. Additionally define Cartesian coordinates in the selected principal axes co-
ordinate system

x′ := (x′, y′, z′) with ρ2 = x′2 + y′2 and z = z′

3. Describe the translation from a general cartesian coordinate system to this
principal axes system by the position vector of the actual element

x′ = x− r

4. Express the z coordinate by the direction vector n

z = (n,x′)

5. Express the coordinate ρ by the two already calculated parameters x′ and
z

ρ =
√
‖x′‖2 − z2

w
z

ρ

x′=x−r

PPPPPPPPq

�
���

����
���

���
���

���
��*

�
�

�
�

�
��7

�����������������:

6

HHj��+

aaa

x

r

(n,x′)

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
��

n

Main-axes cylinder coord.syst.

General coord.syst.

ρ=
√
‖x′‖2−z2

Figure 7.7. Coordinate system transformation

In this way we obtain the general distance function in the form (7.2) by substi- Substituting the
coordinatestuting z and ρ of the simple distance function (of step 1.) by x = (x, y, z).

This function can serve as a test for the output of a given algorithm (dimension Bestfit-test

parameters p, position and direction vector r/n). By inserting any measuring
points x̂ together with the above output parameters we obtain the remaining
distances based on the bestfit solution being tested.
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Examples:

Plane:Plane: Distance
function d(ρ, z) = z = (n,x′) = (n,x− r) = (n,x)− (n, r)

=⇒ d(x, r,n) = nxx + nyy + nzz + D︸︷︷︸
−(n,r)

(7.4)

(7.4) is the well-known ’Hessian normal form’ of the plane, derived here in an
unconventional way.

Cylinder:Cylinder: Distance
function d(ρ, z, R) = ρ−R

=
√
‖x′‖2 − z2 −R =

√
‖x− r‖2 − (n,x− r)2 −R

=⇒ d(x, r,n, R) =√
(x− rx)2 + (y − ry)2 + (z − rz)2 − (nxx + nyy + nzz)2−R if r⊥n (7.5)

Straight line:Straight line:
Distance function

d(ρ, z) = ρ =
√
‖x′‖2 − z2 =

√
‖x− r‖2 − (n,x− r)2

=⇒ d(x, r,n) =√
(x− rx)2 + (y − ry)2 + (z − rz)2 − (nxx + nyy + nzz)2 if r⊥n (7.6)

In (7.5) and (7.6) we have taken advantage of the fact that – due to the transla-Simplification by r⊥n

tional symmetry of the straight line and of the cylinder – we are free to choose the
position vector r. The only condition is that it points to the rotation axis. The
choice r⊥n simplifies the above formulas. If dealing with software that does not
calculate this special solution, we have to resort to the general formula. However,
using the above distance functions for a (conventional) bestfit implementation,
we can use the simplified formulas (7.5) and (7.6) because we have anyway to
perform the minimization, subject to r⊥n (or a similar constraint), as otherwise
we would get a singular system of equations.

Sphere:Sphere: Distance
function

d(ρ, z, R) =
√

ρ2 + z2 −R

=
√
‖x′‖2 − z2 + z2 −R = ‖x′‖ −R = ‖x− r‖ −R (7.7)

=⇒ d(x, r,n, R) =
√

(x− rx)2 + (y − ry)2 + (z − rz)2 −R (7.8)
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(7.8) represents the well-known equation for a sphere but normalized by the
√

. . . Normalized sphere
functionoperation as discussed in section 1.2.3. So it can not only describe the surface

itself but also express the geometrical distance between an arbitrary 3D-point
and the sphere surface.

Cone: Cone: Distance
functiond(ρ, z, α) = (ρ− tan(α)z) sin(α)

=⇒ d(x, r,n, α)

= (
√
‖x− r‖2 − (n,x− r)2 − tan(α)(n,x− r)) sin(α) (7.9)

Toroid: Toroid: Distance
functiond(ρ, z, R, r) =

√
z2 + (ρ−R)2 − r

=⇒ d(x, r,n, R, r)

=

√
(n,x− r)2 + (

√
‖x− r‖2 − (n,x− r)2 −R)2 − r (7.10)

This allows us to verify an algorithm not in an absolute way, but relative to the Relative verification

output of another algorithm or to a known result. This way we can measure and
compare the quality of the algorithm under test.

This method does not allow us to recognize the theoretical correctness of an Incorrectness can be
statedalgorithm, but rather its incorrectness, namely in case the algorithm yields a

result that is inferior to an already known result. Thus, calculating the distances
allows us to check the results of an algorithm based on practical or on theoretical
examples.

First, we can check to see that the result looks reasonable, second we can compare Possible tests

it with that of another algorithm and specify a rate of quality, and third we can
test the algorithm on theoretically constructed or practical bestfit problems, the
results of which are already known (but perhaps not the optimal ones!). All these
tests together yield a good estimate of the correctness of the tested algorithm.

Of course, such statements can be valid only for a restricted range of the input Given range of input
rangeparameters. Because usually we are dealing with nonlinear, iterative algorithms,

convergence strongly depends on the chosen initial values. Furthermore, as we
search for the minimum, there is always the danger of arriving at a local minimum
instead of the global one.

However, in the practice of coordinate metrology it is obvious in most cases if a Local minimum and
global minimumlocal instead of the global minimum has been found.

As an example for a CM-bestfit where normally more than one minimum exists, Cylinder bestfit with
more than one
minimum

we consider the cylinder bestfit. In case of a fit through the minimum number
of points (5), there are normally three possible solutions. By adding additional
measuring points we get an overdetermined problem which has correspondingly
three different (local and global) minima. Based on the nominal data, of course,
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it will be obvious which one of these is the actually required minimum.

Moreover, a lot of cases can theoretically be constructed (e.g. by the reconstruc-Not always global
minimum desired tion of a sculptured surface from measured data) where in fact not a global but

a local minimum is sought. Figure ?? (representing, e.g., a slice of a sculptured
surface) shows two possible ways (global and local minimum) a parametric poly-
nomial curve (x(u), y(u)) could pass through the measured data. Of course it is
obvious that we prefer the local minimum curve (to be a curve on a real surface),
even though the global minimum curve fits better (in our example exactly).

measuring points

deviations from the local minimum surface

local minimum (desired)

global minimum (not desired)

Figure 7.8: Global and local minimum of a sculptured surface bestfit

With the appropriate initial values (i.e. the nominal values) p0, a0 and t0 (locatedLocal minimum in the
neighborhood of the
nominal values

in the neighborhood of the desired minimum), we implicitly select the minimum
which the algorithm has to search for.

In good CM-practice one should always work with enough measuring points. ThisWell distributed
points for sharp
minimum

assures that the desired minimum is very likely identical to the global minimum of
the actual bestfit problem. Furthermore, one should steepen this global minimum
as far as possible by a reasonable distribution of the measuring points (See section
5.5.3). This will shield the output data (i.e., the bestfit parameters) as much as
possible from the influence of disturbances in the input data that may be caused
by measuring errors or random form deviations.

7.3 Distance Calculation for Sculptured Surfaces

When testing bestfit algorithms for non-standard surfaces, a special problemDepending on the
outputted distances is the lack of an exact distance function. Thus we depend on the distance-

information delivered by the algorithm itself. This is, however, not an objective
testing method.

A better concept is to use only the surface coordinates (u, v) instead of distancesRe-calculate
distances, based on
the delivered u, v
values

as the output of the algorithm under consideration. Using this information only
makes sure that we get points lying exactly on the surface. We are not sure if
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we have the real footpoints; perhaps the algorithm is not able to calculate the
exact ones or it delivers the wrong ones by mistake. However, the distances
evaluated by means of the surface coordinates (u, v) can not be shorter than the
real ones. Thus intentional or unintentional cheating becomes impossible. We
can now calculate an upper limit for the value of the objective function:

Q2(a, t,p) =
n∑

i=1

d2(x̂i, ui, vi, a, t,p) , (7.11)

where the function d is the ’distance function’ as defined in (4.8).

For example, if we use this procedure to test the algorithm described in section Residual calculation
as a comparing tool(4.2) which fits a point cloud to another point cloud, we obtain a larger Q2 than

the exact one. Thus residual calculation is also a useful tool for assessing the
quality of (approximately calculating) bestfit algorithms for sculptured surfaces.

7.4 Generating Test Data

To check if an algorithm is correct, we need test data together with known results. Different ways to get
test-dataWe can obtain these results in three different ways.

First, we could obtain them physically, e.g., by rotating and translating a work- Test-data from a real
measurementpiece by pre-defined amounts. Even though this is possible, it would be a time-

consuming and unprecise method.

The second way is to obtain the desired results by using a reference algorithm. Test-data from a
reference algorithmThe disadvantage is that normally we have no reference algorithm for a sculptured

surface. But also dealing with surfaces where reference algorithms exist, we have
no guarantee that they are perfect in all cases.

These drawbacks can be avoided by a third method: Start with a known solution Test-data from
simulationand then construct theoretically a bestfit problem belonging to it. This can be

done in two different ways. A more physical approach would be to develop a
model of the probing process on a coordinate measuring machine and then to
simulate it.

A more mathematical approach is the so-called null-space method proposed by Test-data from
null-space methodCox and Forbes [CF92]. They modify a ’trivial’ bestfit problem (trivial because

the residual vector is zero) in a well-defined way to a ’normal’ bestfit problem
(with non-zero residual vector) in such a way that the initial solution is left
unchanged.

The advantage of this method is that we can construct a problem with an exactly Advantages and
drawbacksknown solution (not only with known limits). A drawback is that we can only

generate problems in a subspace of the space of all possible bestfit problems. We
could also say that we have less ’reality’ than when simulating the physical process
of probing. Besides these two rather academic objections, the main problem
– especially in our case – is that the null space method needs the values of
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the Jacobian matrix. A key step in our algorithm is the function-independent
generation of the Jacobian matrix; thus, we cannot check this important step
by using the null-space method. Doing this so would look like an examination,
where candidate and expert are the same person.

To show the correctness of our algorithm in a realistic way, we should use a phys-Realistic simulation

ical simulation. It generates realistic measuring points based on known position/
orientation and dimension.

7.5 Simple Simulation Model

We simulate the physical probing process starting from nominal position/orien-Starting with nominal
values tation t0, a0 and nominal dimension parameters p0.

For an automatic measurement the probing points on the surface are calculatedProbing at the
nominal locations in
normal direction

with these nominal values and a set of surface coordinates (u10 , v10 , . . . , un0 , un0).
These points have to be approached in the normal direction, to minimize the
influence of friction. The normal directions are also calculated based on the
nominal values because the real values are not known at the beginning.

Now well-defined deviations have to be simulated. The actual surface we simulateSimulated deviations

with dimension deviations ∆p. Its actual position/orientation is simulated with
the pretended deviations ∆a and ∆t. Form deviations will be treated in the next
section.

The center of the probing sphere approaches the actual surface along the straightSimple model

line given by the nominal normal direction in the surface point, where a measure-
ment is required. In a simple model we assume the measuring point to be the
center of the probing sphere at the moment it touches the simulated (substitute)
surface.

First we have to calculate the nominal normal direction in the nominal point.Nominal path of the
probe center The straight line going through the nominal point with this direction is given by:

x(l) = R(a0) · (x(u0, v0,p0) + l · n(u0, v0,p0) + t0) (7.12)

for −∞ < l < ∞, where (u0, v0) are the nominal surface coordinates and the
surface normal n(u, v,p) is computed by

n(u, v,p) =
∂x
∂u
× ∂x

∂v

‖ ∂x
∂u
× ∂x

∂v
‖
(u, v,p) .

The measuring point is situated on this straight line. At the moment of contactLine between probe
center and contact
point

the center of the probe sphere has distance r (=sphere radius) from the simulated
(substitute) surface:

x(u, v, a∗, t∗,p∗) ,

where
p∗ = p0 + ∆p t∗ = t0 + ∆t a∗ = a0 + ∆a .
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This can be described by the expression

x(u, v) = R(a∗) · (x(u, v,p∗) + r · n(u, v,p∗) + t∗) , (7.13)

representing an offset surface.

Thus, to find the center of the probe sphere at the moment of contact (Figure Location of probe
center in the moment
of touching the
surface

7.9), we equate the expressions (7.12) and (7.13). This reduces the problem to
finding the solution u∗, v∗ and l∗ of the nonlinear set of equations:

R(a∗) · (x(u∗, v∗,p∗) + r · n(u∗, v∗,p∗) + t∗)

−R(a0) · (x(u0, v0,p0)− l∗ · n(u0, v0,p0) + t0) = 0 . (7.14)

Equation (7.14) can be solved by a Newton iteration. Inserting the so determined Calculating the
unknowns u∗, v∗ and
l∗

value l∗ in (7.12), we can calculate the synthetical measuring point delivered by
this simple model.

7.6 Refined Simulation Model

7.6.1 Deficiencies of the Simplified Model

We now refine this simple model, taking into consideration that the movement Spread around the
given driving pathand thus the contact of the probe on the surface cannot be performed while

keeping the sphere center always on an ideal straight line.

One reason is the restriction given by a non-ideal numerical control of the axes. Non-ideal regulation

Another reason is the SW-compensation of the geometric errors of a CMM: The SW-compensation

compensation is applied to the measured coordinates but not to the movements.

Furthermore, the sphere could slip in the moment of contact, particularly if we No orthogonal
approachtake into account that it approaches along the nominal normal direction, not

identical to the actual one. When the probe sphere drives to a microscopical
edge or corner it would evade randomly.

For all these reasons the driving accuracy of a CMM is a magnitude worse than Driving is less accu-
rate than measuringthe accuracy of the delivered X, Y, Z-coordinates.

All of these effects can be modelled by a rotationally symmetric random deviation Modelling by random
deviationsaround the theoretical, straight driving path of the probe sphere center.

Instead of a straight line, we introduce a probability cylinder centered on it. For Probability cylinder

the probability of a deviation from the ideal line we assume a Gaussian distribu-
tion (random influences), whose width σ depends on the amount of disturbances
mentioned above.
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Figure 7.9: Mathematical model of the probing process

7.6.2 Simulating Uncertainty of Driving Path

For a two-dimensional deviation where we assume in two orthogonal directionsProbability
contributions in two
dimensions

two independent probability deviations with the center in origin and with the
same width σ, we get a rotation-symmetric and thus isotropic probability distri-
bution [PFTV89]:

p(x, y)dxdy =
1√

2πσ2
e−

x2

2σ2 · 1√
2πσ2

e−
y2

2σ2 dxdy

=
1

2πσ2
e−

x2+y2

2σ2 dxdy

=
1

2πσ2
e−

r2

2σ2

∣∣∣∣∣
∂x
∂r

∂x
∂φ

∂y
∂r

∂y
∂φ

∣∣∣∣∣︸ ︷︷ ︸
r

drdφ . (7.15)

We recognize that the probability p is independent of φ, thus the probability is
isotropic.

p(r, φ) = r · 1

2πσ2
e−

r2

2σ2 (7.16)

=⇒ p(r)dr = dr

2π∫
0

p(r, φ)dφ =
r

σ2
e−

r2

2σ2 dr (7.17)

p(r) is the probability that the probe meets the surface in the distance r fromProbability to deviate
by r from the ideal
path

the intersection point given by the simple model above.
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With this probability deviation independent of direction φ we define a probability Randomly shifted
straight linescylinder around the direct driving path (Figure 7.9). If we chose random compo-

nents xr and yr distributed according to (7.15), we get randomly shifted straight
lines instead of (7.12):

x(l)random = (7.18)

R(a0)·(x(u0, v0,p0) + xr·xu(u0, v0,p0) + yr·xv(u0, v0,p0) + l·n(u0, v0,p0) + t0) ,

where

xu(u, v,p) =
∂x
∂u

‖ ∂x
∂u
‖

xv(u, v,p) =
∂x
∂v

‖ ∂x
∂v
‖

.

This expression has to be inserted into (7.14).

7.6.3 Simulating Form Deviations

So far we have described a substitute feature with no form deviations. This Simulating form
deviation as a random
distribution

type of deviation cannot be described in a simple way by a pre-defined value like
the dimension and position/orientation deviation. To specify these deviations
by one parameter only we use a Gaussian probability distribution with standard
deviation σ. This would meet also the statement made in section 2.1: Ideally a
more general class of substitute features with additional dimension parameters
(e.g. conicity, ellipticity) should be defined; so the remaining form deviations
would include (as far as possible) no systematic deviations.

Of course we could imagine a lot of other appropriate ways to describe a form Appropriate
provability deviationdeviation. Even if the form deviation contains systematic influences, it is not a

bad approach to treat its frequency distribution as a random distribution. If we
perform a bestfit observing a Gaussian criterion, it is reasonable also to use a
Gaussian distribution. In the case of a Chebychev bestfit it would be reasonable
to simulate a uniform block distribution.

From the implementation point of view, there is the problem that a standard Transforming a
Uniform Distribution
into a Gaussian
Distribution

random number generator delivers uniformly distributed values. If we want to
have random values based on Gaussian distribution, we have to consider how to
transform a uniform random variable into a Gaussian random variable.

This can be done by the use of the so-called Box-Muller method [PFTV89]. Box-Muller method

The linear transformation Transforming the
range

w =
W −WMax

WMax −WMin

(7.19)

transforms a uniform random variable W in the range [Wmin, Wmax] to a uniform
random variable w in the range [−1, 0].

Next, we need a parameter transformation w(r) of the probability integral Searching for
deviation in form
(7.17)
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1 =

WMax∫
WMin

p(W )dW ≡
0∫

−1

p(w)dw

in such a way as to obtain a deviation in form of (7.17):

0∫
−1

p(w)︸ ︷︷ ︸
uniform deviate

dw =

∞∫
0

p (w(r))︸ ︷︷ ︸
constant 1

dw

dr
dr =

∞∫
0

p(r)︸︷︷︸
deviate (7.17)

dr .

By specifyingParameter
transformation

w(r) = −e−
r2

2σ2 (7.20)

we getInverse function

r(w) =
√
−2 · ln(−w) · σ (7.21)

for the inverse function and thereforeDerivative

dw

dr
=

r

σ2
· e−

r2

2σ2 . (7.22)

Thus, by transforming the values delivered by the uniform random generator withGaussian random
generator the function (7.20) we get random values distributed according to the probability

distribution (7.17):

0∫
−1

p(w)dw =

0∫
−1

p(w)︸ ︷︷ ︸
=1

dw

dr
dw =

∞∫
0

r

σ2
· e−

r2

2σ2 dr =

∞∫
0

p(r)dr .

As shown in (7.15) this distribution can be transformed into two independentTwo independent
distributions Gaussian distributions with the simple coordinate transformation

x = r · cos(φ)

y = r · sin(φ)

while we input for φ another uniformly distributed random value.

7.6.4 Improved Model

The form deviations are measured normal to the substitute feature, i.e., normalIntroducing form
deviations to the ideal assumed actual surface in (7.13) (Figure 7.9). Therefore the form

deviations can be simulated by a random value rr which is inserted accordingly
in (7.13):

x(u, v)random = R(a∗) · (x(u∗, v∗,p∗) + (r + rr) · n(u∗, v∗,p∗) + t∗) . (7.23)

As another refinement, probe tip deflection can be simulated. This can be doneIntroducing probe tip
deflection on the basis of (6.4) and (6.10) by replacing the probe sphere with an ellipsoid.
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The deflection is described by a given probe characteristic matrix C which is Probe characteristic
matrixcalculated according to (6.10):

C := RE · E , (7.24)

where E defines the half axes of an ellipsoid E = diag(hx, hy, hz) and the rotation
matrix RE defines the orientation of this ellipsoid.

Instead of (7.23) we can write then Modified formula

x(u, v)random = R(a∗) · (x(u∗, v∗,p∗) + C · n(u∗, v∗,p∗) + rr · n(u∗, v∗,p∗) + t∗) .
(7.25)

By this final refinement, we obtain a tool which delivers artificial data by simu- Physical reality

lating the physical reality of the measuring process and the workpiece to a high
degree. It allows for testing any algorithm like, in particular, FUNKE.

A bestfit algorithm should always allow for finding the theoretically correct result. Rules

For a few simulated measuring points, it would find a solution which is rather
better than the simulated one. Increasing the number of points, the solution
approaches the simulated one. For a large number of points the correct bestfit
solution is only slightly better than the simulated solution (∼= 0.1% using 10000
points). So we get the following rules:

1. Providing a simulated form deviation of 0.0, a remaining form deviation of
0.0 should be found as well.

2. If a form deviation > 0.0 is simulated, an equal or a better one should be
found.

3. The more measuring points (statistics!) are used, the nearer the best-fitted
form deviation will approach the simulated one; however, even then the
following statement is valid:

Fitted average form deviation ≤ Simulated average form deviation

Otherwise, the bestfit algorithm has failed.
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Summary

8.1 Background

The core of Coordinate Metrology (CM) is the evaluation software. On one handEvaluation software in
CM it turns a Coordinate Measuring Machine (CMM) into a flexible tool because it

becomes principally capable of measuring all kinds of surfaces. On the other hand,
it also allows – in contrast to quantifying summarized deviations for pure quality
control – a proper analysis of the deviations according to position/orientation,
dimension and form for an improved production process.

8.2 Goals

By consistently pursuing the basic goals of Coordinate Metrology, we contributeGeneralized evaluation
concept to a generalized and standardized evaluation concept which allows us to extend

these goals also to complex and sculptured surfaces. With the proposed algorithm
and the software FUNKE we can additionally compute these surfaces in a very
efficient way, absolutely comparable with the bestfit of standard surfaces. Espe-
cially in this field, however, there is a gap in the commercially available software
tools today.

The algorithm uses the parametric description of a surface x(u, v), which is neededParametric description

(sometimes apparently, sometimes in a hidden form) for any NC-driven produc-
tion process. (Movements of axes as functions of time represent the individual
parametric functions x(t), y(t), etc.) Thus, we do not depend on the availability
of implicit distance functions dx = f(x) which are given analytically only for
standard elements. The interface to CAD/CAM-systems can be established in
quite a natural way.

Furthermore, even standard surfaces can be treated in a more sophisticated man-Sophisticated
evaluation ner because it becomes possible to define additional parameters which allow us

to analyze deviations caused by the actual production process. We can bestfit
a more complex substitute feature, including the nominal feature as a subclass
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(e.g. upper class ’ellipsoid’ containing the subclass ’sphere’). We are then able
to determine additional dimension parameters for describing all possible system-
atic errors of the manufacturing process until the remaining form deviations are
reduced to the random errors only. Thus, measuring results can be used for a
quantitative correction of the workpiece instead of a simple ’pass/fail’-decision.

In the evaluation process we get more flexibility. We can not only evaluate in- Extended flexibility

dividual standard features but also compounds of features (e.g., a square block)
as a whole, according to position/orientation, dimension and form. These com-
pound features can be combinations of standard surfaces as well as combinations
of sculptured/complex ones. This allows us to adapt the evaluation to the desired
functionality of the workpiece.

Because we can freeze each bestfit parameter individually we can treat special or Constraints

poorly conditioned measurement problems in quite an easy way. There is also a
concept to treat more general constraints in a standardized way.

Probe radius correction and deflection compensation can be taken into account Radius correction and
deflection
compensation

using different types of probes on the same workpiece. The deflection compen-
sation of the probe tip can be performed by using the normal direction of the
substitute feature instead of the normal direction of the nominal feature or the
(inaccurate) normal direction delivered by an analogous probe.

This allows us to use not only analogous probing devices but also the much Sculptured surface
measurement on
manually operated
CMM’s

cheaper switching ones for sculptured surface measurement. Thus, and also be-
cause we use a surface-oriented instead of a pointwise calculating bestfit, we can
also perform sculptured surface measuring with manually operated Coordinate
Measuring Machines.

8.3 Realization

We want to make the bestfit procedure independent of the actual surface function. Function-independent
bestfitWe try then to separate the geometrical description of a surface from its position/

orientation description. For this reason we define a generally applicable interface
with g parameters (p1, . . . pg) = p describing geometry, based on the parametric
surface (or curve) description x(u, v,p). The description is in a coordinate system
where it can be held as simple as possible (e.g. xplane = (u, v, 0)) and where
no position/orientation-information is hidden in the remaining parameters. For
standard surfaces this is a principal axes system.

Instead of minimizing an objective function depending on the individual distances Keeping parametric
structurewhich would turn out to be very complicated in parametric representation, we

keep the useful triple structure by directly forming a nonlinear, overdetermined
system of equations whose least squares solution is identical with the minimized
sum of squares of the individual distances.

This system of equations is solved by the Gauss-Newton method where we have Gauss-Newton
methodto solve a sequence of overdetermined, linear systems in the least squares sense.
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The individual matrices of equations are given by the Jacobians, not only as
functions of all bestfit parameters p, a and t, but also as functions of all surface
coordinates (u1, v1, . . . , un, vn). For this reason, the matrices are very large if we
use a large number of measuring points.

By splitting up the Jacobian into surface-function-dependent and into generallySeparating the
Jacobian applicable, surface-function independent parts, we can automate its generation,

treating the actual surface function as a generic function which can be imple-
mented by referencing it by a function address pointer. This allows us to make
the bestfit-algorithm surface independent.

For solving the linear system, we have to search for efficient solution methods.Evaluation time
proportional to
measuring time

Otherwise, because of the reasons mentioned above, the computational effort
would increase with the third power of the number of measuring points while the
memory demands would increase with the second power. Using Gauss-Newton
(instead of Newton), the resulting system of equation becomes very sparse. Ex-
ploiting this sparsity, we can achieve that computational costs and memory de-
mands increase only linearly with the number of measuring points. From the
practical point of view, this means that the ratio between measuring time and
calculation time remains constant.

Different solution methods for solving the sparse system are discussed. With theExploiting sparsity

intention of achieving the best possible savings in memory space, we can use the
system of normal equations directly, bypassing the overdetermined system. From
the point of view of cost efficiency it turns out that an even better way can be
found in our case. By a sequence of orthogonal transformations (Givens rotations)
which can also be interpreted geometrically, we transform the system of equations
to a special structure. Using this structure we solve a reduced, overdetermined
system of equations instead of the full one.

This reduced, overdetermined system of equations is not sparse anymore. SoSVD to detect hidden
redundancies we do not loose any computational performance by applying a standard solution

method to this system. Besides solving it by normal equations or orthogonal
transformations (more recommendable from the point of view of numerical sta-
bility), we can also solve it by the Singular Value Decomposition (SVD) which
allows us to recognize hidden redundancies. This can be especially important for
fitting or modifying the form of a sculptured surface.

As a next step some detailed problems of implementation are discussed. WeDetailed problems

show that probe radius correction and probe tip deflection compensation can be
performed in quite an easy way based on the parametric description of a surface.
Then, the concept of dealing with rotation and translation symmetries is shown.
By a similar concept we can freeze all parameters appearing in bestfit and also
treat more general constraints. On a simple example, the flexibility we have with
the implemented hierarchical data structure in combination with the generally
applicable bestfit algorithm is demonstrated.

Furthermore, the verification of a bestfit algorithm is discussed. This plays aResidual calculation

more and more important role in metrology. For this reason we show a simple
method to compute the implicit distance function of a rotationally symmetric
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surface as a function of its position r and direction n. Based on these distance
functions we discuss concepts to compare and test bestfit algorithms.

Finally a simulation algorithm is presented which simulates the probing process in Simulation

a realistic manner. With this simulation we can efficiently produce artificial mea-
suring points with defined spread (according to form deviation) on an imaginary
surface with known, predefined position/orientation and dimension deviations.
Together with residual calculation and the ’null space’-method as presented by
Cox and Forbes [CF92], we propose this simulation algorithm as a general testing
tool for bestfit algorithms, not only restricted to our purposes.

8.4 Future

The proposed method can be used for Gaussian (L2-norm) bestfit. Using para- L2-norm can be
minimized exactlymetric description for minimizing any norm other than L2 would become quite

complicated (c.f., section 4.3.1) and could not be performed in general manner at
reasonable computational costs.

The Chebychev norm (L∞-norm), however, would especially be of some interest Approximation of the
Chebychev L∞-normfor practical use [Hei89]. Introducing weights in the overdetermined system of

equations, we can perform a sequence of Gaussian bestfits where the weights
for the individual equations in each step are changed to approximate the L∞
solution [Law61]. The first step is performed with unweighted distances. The
squares of the resulting distances are used as weights for the next step and so on.
By this procedure we could approximate an L2, L4, L8, L16-norm, etc.; finally, we
would arrive at an approximation of the Chebychev-norm because big distances
are weighted more and more. This is planned as an enhancement of FUNKE.

Furthermore FUNKE can be used for the compensation [DFK88], [SB93] and ap- Compensation

proximation of sculptured surfaces. ’Compensation’ means that after bestfitting
the nominal shape of a sculptured surface according to position/orientation, a
’compensating surface’ with slightly corrected shape is computed. The correc-
tions are made not in the same direction but in that opposite to the form devi-
ations (normal to the nominal surface). This way, we can correct reproducible
influences of the process by an additional manufacturing step.

Due to the wide scope and flexibility of FUNKE we refrained from transforming Industrial applications
based on FUNKEit into a general ready-to-use form. Instead of this, a large subroutine library

is included by means of which the appropriate software for a specific measuring
task can be implemented relatively easily but still on the source code level. In
co-operation with industry, it is another future goal now to make this possible
more and more also on the interactive level for special, but often used, measuring
tasks, where FUNKE has some advantages over conventional evaluation methods.

Furthermore, as explained in section 6.3.2.1, the underlying data structure is in- User friendliness on
the source code levelfluenced by an object oriented concept (although most parts are written in the lan-

guage C). So a planned upgrade would be to develop an object oriented interface
(in language C++) for the basic algorithms (in language C). Such an improved
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user friendliness on the source code level would make it easy to add/implement
software modules aimed at specific applications with a minimum of time expen-
diture.

Last but not least, FUNKE is now being extended for use with state-of-the-Optical devices
integrated in FUNKE art optical 3D measuring devices [Bre93] which yield large number of measuring

points (≥ 250′000) in a short time, though currently with relatively poor accuracy
(≥ 50µm). This system can be applied to special measuring tasks as well as to
digitizing, combined with surface reconstruction. This becomes more and more
important in connection with the quickly growing field of rapid prototyping.
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Symbols

x = (x, y, z) 3D-coordinates
u, v surface coordinates
P fixed parameters
r position vector
n direction vector
n number of measuring points
di deviations
dx dist. of point x to the surface
nu,nv u, v-directions
g number of dimension-parameters
p = (p1, . . . , pg) dimension/geometry parameters
x′(u, v,p) special parametric representation
mx, my center coordinates of the circle
r radius of the circle
Qm objective function based on Lm-norm
Q orthogonal matrix
a = (a, b, c) xyz-rotations
t = (tx, ty, tz) xyz-translations
t̄ = R(a) · t alternatively defined translation
x(u, v,p, a, t) general parametric representation
R(a) = Rx(a) ·Ry(b) ·Rz(c) rotation matrix
p0 = (p10, . . . , pg0) nominal dimensions
x′nom(u, v) = x′(u, v,p0) nominal surface in SPR
t0 = (tx0, ty0, tz0) nominal position
a0 = (a0, b0, c0) nominal orientation
xnom(u, v) = x(u, v,p0, a0, t0) nominal surface in nom. pos./orient.
ui0, vi0 surface coord. of the nominal points
x̃i = x(ui0, vi0,p0, a0, t0) nominal points
x̂i = (x̂i, ŷi, ẑi) measuring points
p∗, a∗, t∗ bestfitted parameters
∆p,∆a,∆t parameter corrections
xsub(u, v) = x(u, v,p∗, a∗, t∗) substitute surface (bestfitted)
ui
∗, vi

∗ surface coord. of footp.(after bestfit)
x̄i = x(ui

∗, vi
∗,p∗, a∗, t∗) footpoints (after bestfit)

∆ui,∆vi corrections of the surface coord.
d(x) distance function
uM

i , vM
i = uM

i (p, a, t), vM
i (p, a, t) surface coord. of the footpoints

ui, vi actual surface coordinates
xi(ui, vi,p, a, t) actual surface points

Lm = m

√∑n
i=1 dm

i Lm-norm



D = (d1, . . . , dn) vector of all deviations
∆xi = (∆xi, ∆yi, ∆zi) vector of 3D-coord. diff.
∆X = (∆x1, . . . ,∆xn) vector of all 3D-coord. diff.

X̂ = (x̂1, . . . , x̂n) vector of all measuring points

X̃ = (x̃1, . . . , x̃n) vector of all nominal points
X̄ = (x̄1, . . . , x̄n) vector of all footpoints
U = (u1, v1, . . . , un, vn) vector of all surface coordinates
T = (t, . . . , t) vector defined by the translation t

Q(a) =
n⊕

i=1
R(a) matrix defined by the rotation R(a)

W = (U,p, a, t) vector of all unknowns
X(W) = (x1(W), . . . ,xn(W)) vector of all surface functions
W0 = (U0,p0, a0, t0) initial values of the unknowns
∆W vector of all corrections (1 step)
∆W? vector of all final corrections
J(W) actual Jacobian
X′ = (x′1, . . . ,x

′
n) vector of all function values (SPR)

∂f
∂e

= ( ∂fi

∂ej
) sub-part of the Jacobian

Qa = ∂Q
∂a

Q(a) derived with respect to a

Qb = ∂Q
∂b

Q(a) derived with respect to b

Qc = ∂Q
∂c

Q(a) derived with respect to c
Ra = ∂R

∂a
R(a) derived with respect to a

Rb = ∂R
∂b

R(a) derived with respect to b
Rc = ∂R

∂c
R(a) derived with respect to c

ai = (ai, bi, ci) angles of 3 consecutive Givens rotations
r1, r2, r3 3 orthog. vectors defined by 3 Givens rot.

R(ai)
T =

[
r1 r2 r3

]
matrix of 3 consecutive Givens rotations

G matrix for pre-triagonalization
Pe permutation matrix for the equations
Pu permutation matrix for the unknowns
akl = (axkl

, aykl
, azkl

) polynomial coefficients
pkl(u, v,p) basic polynomials
pkl(i) = pkl(ui, vi,p) polynomial values

U = ∂X′

∂U
’U-part’ of the Jacobian

P = ∂X′

∂p
’P-part’ of the Jacobian

A = QT · ∂X
∂a

’a-part’ of the Jacobian
T = ∂T

∂t
’T-part’ of the Jacobian

D = QT X̂−X′(U,p)−T right hand vector
x(i) = x′(ui, vi,p) function values

xu(i)
= ∂x′

∂u
(ui, vi,p) values of u-derivatives

xv(i)
= ∂x′

∂v
(ui, vi,p) values of v-derivatives

xpj(i)
= ∂x′

∂pj
(ui, vi,p) values of p derivatives

∆x(i) = RT x̂i − x′(ui, vi,p)− t i-th difference value
xa(i)

= RT Ra · x′(ui, vi,p) i-th special value (a)

xb(i) = RT Rb · x′(ui, vi,p) i-th special value (b)

xc(i) = RT Rc · x′(ui, vi,p) i-th special value (c)



P(XY ) ’XY -part’ of the matrix Pe

P(Z) ’Z-part’ of the matrix Pe

P(U) ’U-part’ of the matrix Pu

G(XY ) ’XY -part’ of the matrix G
G(Z) ’Z-part’ of the matrix G
σ 1 . . . σg+6 singular values
Σ = diag(σ 1 , . . . , σg+6) diagonal matrix of the singular values
Σ+ pseudo-inverse of the matrix Σ
σmax maximum singular value
εmachine numerical accuracy of the machine
ei vector to the i-th contact point
ri i-th probe radius
R = (r1 · e1, . . . , rn · en) vector of all probe radius corrections
n(u, v,p) surface normal
∆x?

(i) = ∆x(i) + RT (a)riei reduced coordinate differences

∆X? = (∆x?
(1), . . . ,∆x?

(n)) vector of all reduced coord.diff.

J(i) =
∂(∆x?

(i)
)

∂(∆x(i))
i-th Jacobian for the reduced diff.

Ei characteristic of probe deflection
REi

orientation of probe deflection
R? = (RE1E1e1, . . . , REnEnen) modified vector of probe radius corr.
s = (ρx, ρy, ρz, τx, τy, τz) ’symmetry’ vector
S = S? · S?T ’symmetry’ matrix
S? matrix from decomposition
c ’constraint’ vector
C = diag(c) ’constraint’ matrix
f = s AND c ’freezing’ vector
F = F ? · F ?T ’freezing’ matrix
F ? matrix from decomposition

x′(K)(u, v,p) surf. function of the K-th surface
p(K) dimensions of the K-th surface
a(K), t(K) pos./orient.of the K-th surface
x′ = x− r coordinate transformation

ρ =
√
‖x′‖2 − z2 cylinder coordinate (ρ-direct.)

z = nT · x′ cylinder coordinate (z-direct.)
d(x, r,n,p) distance function (cart. coord.)
d(ρ, z,p) distance function (cyl. coord.)
xr random value in x
yr random value in y
rr random value in r



152



Curriculum Vitae

Personal Data:

Name: Sourlier
First name: David Michael
Date of birth: January 29th, 1959
Nationality: Swiss
Marital status: married, three children

Professional Training:

1965-71 Primary school in Birmensdorf (ZH)
1971-77 Secondary school ’Real- und Literar-Gymnasium Zürich-Freudenberg’
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’Triatex International AG’ in Zürich; Entwicklung von Algorithmen zur Model-
lierung, numerischen Simulation, Rezept-Vorausberechnung, Qualitätskontrolle
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